Search published articles


Showing 5 results for Tamizifar

Mehryab A., Arabi H., Tamizifar M., Seyedein S.h., Razazi M.a.,
Volume 2, Issue 1 (Oct 2005)
Abstract

In this research, the mechanism of joining three sheets of metals, i.e. brass-steel-brass, by cold roll welding process has been studied. For this purpose, the two surfaces of steel sheets were roughened with stainless steel wire brush by different amounts, then the brass sheets were put on both sides of the steel sheets, before they were subjected to cold roll process. During rolling, peaks of the asperities on the surfaces of the steel sheet were pressurized, i.e. deformed, much more than that of trough. Hence, more hardening due to formation of higher dislocation density in the peaks regions were detected in comparison to the trough regions. Therefore, due to the differences in the amounts of work hardening occurred during cold rolling in the peaks & trough of the scratches and also due to the nature of the rough surfaces of the steel sheets, which causes the smooth surface of soft brass sheets laied over the rough surface of the steel sheet to be shappend according to the profile of the steel sheet scratches during cold rolling, mechanical locking occurred at the interface of brass & steel sheets. In addition, while the extrusion of brass took place through cracks within the surface of hardend peaks and metal bonding occurred on the contact points of the brass sheet & the vergin steel. Therefore, it seems two mechanisms were in operation is making a suitable joining between the sheets. One was a locking mechanism due to the roughness of the steel sheets & the other was bonding mechanism due to the bonding between the peak points of the scratches &soft brass surface. The strength of the bonded points in the interface were later increased by annealing the composite, so that by annealing the samples within the 500-900°C range for aperiod of 1 1/2 hr the interface strength increase substantially. The results of peeling test indicated that the interface strength of the samples annealed at 700°C or more increased so much that the brass sheet toms during peeling & the fracture did not pass through the interface.
Hosseini Sh., Arabi H., Tamizifar M., Zeyaei A.a.,
Volume 3, Issue 1 (Oct 2006)
Abstract

In this research, rotating bending fatigue test at minimum to maximum stress ratio of R=-1 was used for investigating the fatigue behavior of Ti-6Al-4V alloy. Both smooth and notched specimens, with elastic concentration factor, kt, of approximately 3.6 and 4.1 were used for this purpose.In addition, the effect of variation in ultimate tensile strength, UTS, on the fatigue behavior of this alloy was studied. S-N curves were drawn and the value of notch sensitivity was obtained or each case.The results showed that the presence of notch in Ti-6Al-4V alloy has a different amount of sensitivity when the notched specimens were subjected to high cycle fatigue (HCF) and low cycle fatigue (LCF) tests. However, the notch sensitivity of this alloy was shown generally to be much lower than steel alloys with similar UTS values. Thus, considering the high compatibility of this alloy with the body environment and its low sensitivity to notch, one can strongly recommend this alloy for use in biomedical application.
S. M. Zahraee,, M. T. Salehi,, H. Arabi, M. Tamizifar,
Volume 4, Issue 3 (Summer &Autumn 2007 2007)
Abstract

Abstract: The objective of this research was to develop a tungsten heavy alloy (WHA) having a microstructure and properties good enough to penetrate hard rolled steels as deep as possible. In addition this alloy should not have environmental problems as depleted uranium (DU) materials. For this purpose a wide spread literature survey was performed and on the base of information obtained in this survey, three compositions of WHA were chosen for investigation in this research. The alloys namely 90W-7Ni-3Fe, 90W-9Ni-Mn and 90W-8Ni-2Mn were selected and after producing these alloys through powder metallurgy technique, their thermal conductivity, compression flow properties and microstructures were studied. The results of these investigations indicated that W-Ni-Mn alloys had better flow properties and lower thermal conductivities relative to W-Ni-Fe alloy. In addition Mn helped to obtain a finer microstructure in WHA. Worth mentioning that a finer microstructure as well as lower thermal conductivity in this type of alloys increased the penetration depth due to formation of adiabatic shear bands (ASB) during impact.
A. Ataei, M. Jalaly, M. Tamizifar,
Volume 14, Issue 1 (March 2017)
Abstract

The boronizing of a tungsten heavy alloy containing Ni and Fe as the major alloying elements were performed in the present study to increase its surface hardening. Pack cementation method was employed as a well-known, successful solid-state process for boronizing. The coating treatment was accomplished at different temperatures of 1000, 1050 and 1100°C for 6 and 9 hours. The formation of tungsten boride phase was confirmed, although a silicide layer covered the surface of the specimen as the outer layer. The mechanism of the formation of a multilayered surface was explained. The maximum thickness of reaction zone and surface hardness achieved in the current work were 300 µm and 2470 HV, respectively.


M. H. Zamani, M. Divandari, M. Tamizifar,
Volume 15, Issue 1 (March 2018)
Abstract

Lap joints of commercially pure magnesium plates to aluminium plates (Magnesium plate on the top, and Aluminium plate, grade 1100, on the bottom side) were conducted by friction stir welding using various traveling and rotation speeds of the tool to investigate the effects of the welding parameters on the joint characteristics and strength. Defect-free lap joints were obtained in the welding traveling speed range of 40-80 mm/min, and rotational speed range of 1200-1600 rpm. The shear tensile strength of Mg/Al joints increased as a result of decreasing the welding speed from 120 to 40 mm/min at constant rotation speed of 1600 rpm.  Defects such as surface grooves, excessive flash, tunnels, and voids were observed if the joints prepared out of the mentioned range. The effects of the welding parameters are discussed metallographically based on observations with optical and scanning electron microscopes.


Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb