Jashanpreet Singh, Rana Gill, Satish Kumar, S.k. Mohapatra,
Volume 19, Issue 4 (Desember 2022)
Abstract
In this paper, an investigation was carried out to test the suitability of potential additive materials in
WOKA 3533 (WC-10Co4Cr) cermet HVOF coating subjected to slurry erosion in ash conditions. The additives
namely molybdenum carbide, yttrium oxide, and zirconium oxide were added in equal percentages (3 wt.%) in
WOKA cermet powder. High-velocity oxy-fuel (HVOF) spraying was performed to develop the additive-based
WOKA cermet coatings. The slurry erosion in ash conditions was tested using the pot tester. Microstructural and
mechanical properties of traditional and additive-based WOKA cermet coatings were also tested in the present
study; for example, microstructure, crystalline phases of as-sprayed coatings, and microhardness. Results present a
comparison of surface erosion wear of different cermet coatings. It was found that the yttrium oxide was a suitable
additive for the WOKA cermet coatings than the molybdenum carbide. However, zirconium oxide is unsuitable for
WOKA cermet coatings in erosion wear applications.
Richa Singh,
Volume 21, Issue 1 (March - Special Issue 2024)
Abstract
Drug-resistance among bacteria is a concerning issue in medical field. Silver nanoparticles (AgNPs) are one of the promising novel nano-antibiotics. In the present study, AgNPs were synthesized using cell-free extract of Acinetobacter sp. challenged with silver nitrate. Preliminary observations done using UV-Vis spectrophotometry at 420 nm. Complete reduction of silver ions to AgNPs was confirmed through cyclic voltammetry. Electron microscopy revealed formation of spherical shaped nanoparticles of size upto 20 nm. These AgNPs were furthr used to determine their effect on activity of various antibiotics against pathogenic bacteria such as Neisseria and Xanthomonas. Higher antibacterial activity of AgNPs was observed against Gram-negative bacteria. Enhanced antibacterial action of AgNPs was observed with selected beta-lactam antibiotics producing upto 3-fold increase in area of zone of inhibition. On exposure to AgNPs, the minimum inhibitory concentration and minimum bactericidal concentration of antibiotics were lowered by upto 2000 times indicating potential synergistic action of AgNPs. This study clearly signifies that the drug, proved to be inefficient due to bacterial resistance, could be made functional again in presence of AgNPs. This will help in development of novel antibacterial formulations containing antibiotics and nanoparticles to combat multiple drug-resistance in microorganisms.