Search published articles


Showing 3 results for Moghaddam

Sheikhi Moghaddam K., Ataie A.,
Volume 2, Issue 4 (Jul 2005)
Abstract

Ultra-fine particles of barium hexaferrite have been synthesized by co-precipitation method using barium nitride and iron chloride precursors with a Fe/Ba molar ratio of 11. Co-precipitation was carried out at 25 and 80°C using NaOH as a precipitant. Effect of coprecipitation and annealing temperatures on the phase composition and morphology of the products have been investigated using XRD and SEM, respectively. XRD results indicated existence of BaFeO3-x as a major phase in co-precipitated samples. Analysis of the XRD results also revealed that barium hexaferrite starts to form at a relatively low temperature of 700°C for sample synthesized at 80°C. SEM micrographs exhibit plate-like hexagonal particles of barium hexaferrite for calcined samples. The SEM results showed that the mean particle size of co-precipitated sample at 25°C is smaller than that of 80°C after calcining.
A. Ostovari Moghaddam, A. Shokuhfar, A. Cabot,
Volume 16, Issue 4 (December 2019)
Abstract

Metal sulfides containing non-toxic and earth abundant elements have emerged as new environmentally friendly thermoelectric materials. In the present work, a new, fast and large scale route to synthesise bulk nanostructured Co1-xCuxSbS paracostibite is presented. Stoichiometric compositions of Co1-xCuxSbS nanoparticles with 0 ≤ x ≤ 0.08 were first processed by high energy ball milling for 3 h, and then annealed at different temperatures between 400 ºC to 650 ºC for 1 h. The phase transitions and diffusion process during annealing were thoroughly studied by x-ray diffraction (XRD) and scanning electron microscopy (SEM). Agglomerated nanoparticles with sizes in the range from 40 nm to 80 nm were obtained after 3 h of ball milling, and remained below 100 nm after annealing and hot pressing. The thermoelectric properties of hot pressed samples, including the Seebeck coefficient (S), electrical conductivity (σ) and thermal conductivity (k), were measured from room temperature up to 723 K. All the samples exhibited a p-type semiconductor character at room temperature and underwent a transition from p-type to n-type conduction above 473 K. a maximum ZT value of 0.12 was obtained for Co0.06Cu0.04SbS4 at 723 K.

Hamid Reza Rezaei Ashtiani, Shahab Moghaddam,
Volume 19, Issue 1 (March 2022)
Abstract

In this study, the effects of heat treatment of aluminum alloy on the tube bending process were investigated in the rotary draw bending process. As two experimental and numerical simulation methods were used to determine the wall-thinning, ovality, and spring back for extruded, annealed, and aged AA6063 aluminum alloy tubes in different bending angles and bend radii. Numerical simulations were done by the finite element method with Abaqus software. The results indicated that in comparison with annealed and extruded parts, wall-thinning reduced whereas the amount of ovality and spring-back increased in the aged tubes. Also, in each case, the percentage of wall-thinning decreased with increasing bend radius, and the effect of bend radius was greater in the reduction of ovality from the bending angle. Investigations showed that the spring-back rate also decreased with an increasing bending angle.

Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb