Search published articles


Showing 3 results for M. A. Boutorabi

M. Goodarzi, S. M. A. Boutorabi, M. A. Safarkhanian,
Volume 6, Issue 3 (Summer 2009 2009)
Abstract

Abstract:In this study, an effort has been made to determine the influence of rotational speed of tool on themicrostructure and hardness values of friction stir welded 2024-T851 aluminum alloy. The microstructure of stir zonein the joints has been investigated. It was found that the particles such as Al6(CuFeMn) particles are broken up duringfriction stir welding, and the degree of break up of these particles in the stir zone increases with increasing rotationalspeed. Since the break up of these particles and the recrystallization of new grains happen simultaneously, the brokenparticles would be placed in the grain boundaries. Moreover, the hardness value in the stir zone increases withincreasing rotational speed
S. M. Mostafavi Kashani, H. Rhodin, S. M. A. Boutorabi,
Volume 10, Issue 3 (September 2013)
Abstract

The influences of age hardening and HIP (Hot Isostatic Pressing) on the mechanical properties of A356 (Al 7Si 0.6 Mg) casting alloys were studied. Cast bars were homogenized, heated and maintained at a temperature of 540°C for a duration of 2 hours, followed by rapid cooling in a polymeric solution. The castings were age hardened at 180°C for a duration of 4 hours before being subjected to HIP process at pressure of 104 MPa for 2 hours. The results indicated that the age hardening process used improved the tensile properties of A356. The HIP process removed the internal surface-connected porosities and improved the ductility of the samples significantly. Additionally, HIP reduced scattering in the tensile test data
M. H. Goodarzy, H. Arabi, M. A. Boutorabi, S. H. Seyedein, H. Shahrokhi,
Volume 11, Issue 1 (march 2014)
Abstract

Variation in microstructural features of 2024 aluminum alloy plastically deformed by equal channel angular pressing (ECAP) at room temperature, was investigated by X-Ray diffraction in this work. These include dislocation density dislocation characteristic and the cell size of crystalline domains. Dislocations contrast factor was calculated using elastic constants of the alloy such as C 11, C 22 and C 44 . The effect of dislocations contrast factor on the anisotropic strain broadening of diffraction profiles was considered for measuring the microstructural features on the base of the modified Williamson-Hall and Warren-Averbach methods. Results showed that the dislocations density of the solution annealed sample increased from 4.28×10 12m-2 to 2.41×10 14m-2 after one pass of cold ECAP and the fraction of edge dislocations in the solution annealed sample increased from 43% to 74% after deformation. This means that deformation changed the overall dislocations characteristic more to edge dislocations. Also the crystalline cell size of the solution annealed sample decreased from 0.83μm to about 210nm after one pass of ECAP process at room temperature

Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb