Search published articles


Showing 2 results for Banijamali

Zahra Shamohammadi Ghahsareh, Sara Banijamali, Alireza Aghaei,
Volume 20, Issue 2 (June 2023)
Abstract

Various analysis techniques were used to investigate the effects of P2O5 on the crystallization, mechanical features, and chemical resistance of canasite-based glass-ceramics. The results showed that canasite-type crystals were the primary crystalline phase in the examined glass-ceramics subjected to the two-step heat treatment, while fluorapatite was the secondary crystalline phase in some specimens. The microstructural observations by field emission electron microscope indicated that the randomly oriented interlocked blade-like canasite crystals decreased with an increase in the P2O5 content of the parent glasses. Among the examined glass-ceramics, the Base-P2 composition (containing 2 weight ratios of P2O5 in the glass) showed the most promising mechanical features (flexural strength of 176 MPa and fracture toughness of 2.9 MPa.m1/2) and chemical resistance (solubility of 2568 µg/cm2). This glass-ceramic could be further considered as a core material for dental restorations.

 

Ahad Saeidi, Sara Banijamali, Mojgan Heydari,
Volume 21, Issue 2 (June 2024)
Abstract

This study explores the fabrication, structural analysis, and cytocompatibility of cobalt-doped bioactive glass scaffolds for potential applications in bone tissue engineering. A specific glass composition modified from Hench's original formulation was melted, quenched, and ground to an average particle size of 10 μm. The resulting amorphous powder underwent controlled sintering to form green bodies and was extensively characterized using simultaneous differential thermal analysis (DTA), Raman spectroscopy, and Fourier Transform Infrared analysis (FTIR). After mixing with a resin and a dispersant, the composite was used in digital light processing (DLP) 3D printing to construct scaffolds with interconnected macropores. Thermal post-treatment of 3D printed scaffolds, including debinding (Removing the binder that used for shaping) and sintering, was optimized based on thermogravimetric analysis (TG) and the microstructure was examined using FE-SEM and XRD. In vitro bioactivity was assessed by immersion in simulated body fluid (SBF), while cytocompatibility with MC3T3 cells was evaluated through SEM following a series of ethanol dehydrations. The study validates the fabrication of bioactive glass scaffolds with recognized structural and morphological properties, establishing the effects of cobalt doping on glass behavior and its implications for tissue engineering scaffolds. Results show, Low cobalt levels modify the glass network and reduce its Tg to 529 oC, while higher concentrations enhance the structure in point of its connectivity. XRD results shows all prepared glasses are amorphous nature, and DTA suggests a concentration-dependent Tg relationship. Spectroscopy indicates potential Si-O-Co bonding and effects on SiO2 polymerization. Cobalt's nucleating role promotes crystalline phases, enhancing bioactivity seen in rapid CHA layer formation in SBF, advancing the prospects for bone tissue engineering materials.

Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb