Search published articles


Showing 4 results for Ahmed

Rand B., Ramos V. P. S., Ahmed A. S.,
Volume 1, Issue 3 (Apr 2004)
Abstract

Some of the scientific principles underlying the role of carbon and graphite in graphitic refractories are considered, with emphasis on the graphite phase. The highly anisotropic nature ofgraphite is a key factor in its ability to modify the properties of oxide refractories, resulting in the potential for anisotropy in the subsequent graphitic composite, depending upon the fabrication conditions. The thermal and mechanical properties are considered for model alumina-graphitecomposites first with no anti-oxidant additives in the formulation to reveal the intrinsic effect ofthe graphite phase and then effects of silicon as a typical additive are examined. The behaviour is modified considerably when the extent of ceramic bonding in the materials is increased through the reactions of silicon with the gaseous atmosphere and with the constituents in the refractory. Finally, a brief consideration of the structure and properties of typical binder phases is presented.
Muhammad Muzibur Rahman, Shaikh Reaz Ahmed,
Volume 18, Issue 4 (December 2021)
Abstract

This paper reports the wear behavior of Cu, high Cu-Sn alloy, high Cu-Pb alloy and high Cu-Sn-Pb alloy under dry sliding at ambient conditions. These four materials were chosen for the wear resistance characterization of SnPb-solder affected old/scraped copper (high Cu-Sn-Pb alloy) to explore its reusing potentials. Wear tests were conducted using a pin-on-disk tribometer with the applied load of 20N for the sliding distance up to 2772 m at the sliding speed of 0.513 ms-1. The applied load was also changed to observe its effect. The investigation reveals that the presence of a little amount of Sn increased the hardness and improved the wear resistance of Cu, while a similar amount of Pb in Cu reduced the hardness but improved the wear resistance. The general perception of ‘the harder the wear resistant’ was found to match partially with the results of Cu, Cu-Sn alloy and Cu-Sn-Pb alloy. Coefficient of friction (COF) values revealed non-linearly gradual increasing trends at the initial stage and after a certain sliding distance COF values of all four sample materials became almost steady. SnPb-solder affected Cu demonstrated its COF to be in between that of Cu-Pb alloy and Cu-Sn alloy with the maximum COF value of 0.533.
Imtiaz Ali Soomro, Srinivasa Rao Pedapati, Mokhtar Awang, Afzal Ahmed Soomro, Mohammad Azad Alam, Bilawal Ahmed Bhayo,
Volume 19, Issue 4 (Desember 2022)
Abstract

This paper investigated the optimization, modelling and effect of welding parameters on the tensile shear load bearing capacity of double pulse resistance spot welded DP590 steel. Optimization of  welding parameters was performed using the Taguchi design of experiment method. A relationship between input welding paramaters i.e., second pulse welding current, second pulse welding current time and first pulse holding time and output response i.e, tensile shear peak load was established using regression and neural network. Results showed that maximum average tensile shear peak load of 26.47 was achieved at optimum welding parameters i.e., second pulse welding current of 7.5 kA, second pulse welding time of 560 ms and first pulse holding time of 400 ms. It was also found that the ANN model predicted the tensile shear load with higher accuracy than the regression model.
Ahmed Hafedh Mohammed Mohammed, Khairul Anuar Bin Shariff, Mohamad Hafizi Abu Bakar,
Volume 20, Issue 4 (December 2023)
Abstract

The coated β-tricalcium phosphate (β-TCP) with dicalcium phosphate dihydrate (DCPD) has attracted much attention in the biomaterials field due to the increase in its osteoconductivity. Besides, the porous bioceramic scaffolds with controlled pore sizes are significant in stimulating bone-like cell activity. In this study, the effect of the setting-time process and acidic-calcium phosphate (CaP) concentrations on the fabrication and properties of porous DCPD/ β-TCP scaffolds were studied. Subsequently, the specimens were examined using X-ray diffraction (XRD), scanning electron microscopy (SEM), compression strength and Fourier transforms infrared (FTIR). The study results revealed that the porous DCPD/ β-TCP scaffolds with macro- and micropore sizes were successfully obtained after the 300-600 µm of porous β-TCP granules were exposed to an acidic-CaP solution. Furthermore, the setting-time process and acidic-CaP concentrations increased the DCPD interlocking between granules, and the mechanical strengths of scaffolds increased up to 0.5 MPa. Meanwhile, the porosity levels were changed based on the formation of DCPD crystals. This study was expected to provide novel insights to researchers in the field of bioceramics through its investigation on the creation of porous DCPD/ β-TCP scaffolds.

 

Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb