Showing 2 results for Adaptive Fuzzy Control
M. Baghaeian, A. A. Akbari,
Volume 3, Issue 3 (9-2013)
Abstract
In this paper, the enhancement of vehicle stability and handling is investigated by control of the active
geometry suspension system (AGS). This system could be changed through control of suspension mounting
point’s position in the perpendicular direction to wishbone therefore the dynamic is alternative and
characteristics need to change. For this purpose, suitable controller needs to change mounting point’s
position in limit area. Adaptive fuzzy control able to adjust stability and handling characteristics in all
conditions. Also, simple controller such as proportional-integral-derivative (PID) versus adaptive fuzzy
have been used that submit intelligent controllers. The three of freedom model (3DOF) in vehicle handling
is validated with MATLAB and CarSim software. The results show that the steady state response of the
adaptive fuzzy controller has been closed to desired yaw and roll angle has been enhanced about %20. In
cases of lateral velocity and side slip angle have the same condition that it shows the stability has been
improved. The control effort of PID needs to change very high that this response is not good physically,
while control effort in adaptive fuzzy is less than 50 mm.
Abbas Harifi, Farzan Rashidi, Fardad Vakilipoor Takaloo ,
Volume 10, Issue 1 (3-2020)
Abstract
The control of Antilock Braking Systems (ABS) is a difficult problem, because of their nonlinearities and uncertainties appearing in their dynamics and parameters. To overcome these issues, this paper proposes a new adaptive controller for the next generation of ABS. After considering a complex vehicle dynamic, a triple adaptive fuzzy control system is presented. Important parameters of the vehicle dynamic include two separated brake torques for front ands rear wheels, as well as longitudinal weight transfer which is caused by the acceleration or deceleration. Because of the nonlinearity of the vehicle dynamic model, three fuzzy-estimators have been suggested to eliminate nonlinear terms of the front and rear wheels’ dynamic. Since the vehicle model parameters change due to variations of road conditions, an adaptive law of the controller is derived based on Lyapunov theory to adapt the fuzzy-estimators and stabilize the entire system. The performance of the proposed controller is evaluated by some simulations on the ABS system. The results demonstrate the effectiveness of the proposed method for ABS under different road conditions.