Showing 5 results for Sea
M.h. Shojaeefard, V.kh. Mousapour, M.sh. Mazidi,
Volume 4, Issue 1 (3-2014)
Abstract
Thermal Contact Conductance (TCC) between an exhaust valve and its seat is one of the important parameters to be estimated in an internal combustion engine. An experimental study presented here to acquire temperature in some interior points to be used as inputs to an inverse analysis. An actual exhaust valve and its seat are utilized in a designed and constructed setup. Conjugate Gradient Method (CGM) with adjoin problem for function estimation is used for estimation of TCC. The method converges very rapidly and is not so sensitive to the measurement errors. Contact frequency is one the factors which have a significant influence on TCC. The results obtained from current inverse method as well as those obtained from linear extrapolation method show that the thermal contact conductance decreases as the contact frequency increases. The results obtained from both sets of results are also in good agreement.
M.h. Shojaeefard, V.kh. Mousapour, M.sh. Mazidi,
Volume 4, Issue 1 (3-2014)
Abstract
Thermal Contact Conductance (TCC) between an exhaust valve and its seat is one of the important parameters to be estimated in an internal combustion engine. An experimental study presented here to acquire temperature in some interior points to be used as inputs to an inverse analysis. An actual exhaust valve and its seat are utilized in a designed and constructed setup. Conjugate Gradient Method (CGM) with adjoin problem for function estimation is used for estimation of TCC. The method converges very rapidly and is not so sensitive to the measurement errors. Contact frequency is one the factors which have a significant influence on TCC. The results obtained from current inverse method as well as those obtained from linear extrapolation method show that the thermal contact conductance decreases as the contact frequency increases. The results obtained from both sets of results are also in good agreement.
Dr. Javad Marzbanrad, Mr Mohammad Hafezian, Mr Mehdi Mozaffarikhah,
Volume 9, Issue 1 (3-2019)
Abstract
In this paper, the acoustic analysis of noise has been done in automotive cabin at high speed. High-frequency noise sources are applied separately to the roof and floor panels as well as to the windshield of the vehicle, which has been investigated at both the driver's and rear passenger's head. The most important panels that have the most noise emission are specified. In order to analyze high frequencies, the Statistical Energy Analysis (SEA) method has been used; also, the Response Surface Methodology (RSM) has been used to obtain optimized panel in terms of minimally weighing and maximum noise reduction. The results show that the proposed panels with unconstrained rubber layer can reduce the cabin interior aerodynamically generated noise more than %6.
Mr. Hamed Rahmanian, Dr. Alireza Sadeghi, Dr. Ali Asghar Ataee,
Volume 10, Issue 1 (3-2020)
Abstract
Application of Mg alloy parts in automotive industry is increasing to reduce weight and fuel consumption. One of the high potential parts for application of Mg alloys is the front seat frame. However, change of material is accompanied by change of manufacturing process and change of design for the seat frame. In the present research while keeping the reference overall ergonomic outline, a new substitute Mg alloy design was proposed, featuring a simple easy to manufacture Z profile. Next, a two-stage optimization technique (size and shape) is proposed for the Mg seat frame based on the stress and displacement criteria of standard test plans. The final optimized design is close to fully-stressed state and is 70% lighter than the reference steel backrest.
Hamidreza Ghasempoor, Ali Keshavarzi, Hamed Saeidi Googarchin,
Volume 13, Issue 4 (12-2023)
Abstract
The utilization of adhesively bonded square sections (ABSS) serves to enhance energy absorption and specific energy absorption (SEA) when subjected to oblique loading. Finite element models utilizing LS-DYNA were constructed in order to examine the deformation mode and load-displacement characteristics of ABSS and hybrid aluminum/carbon fiber reinforced polymer models. Subsequently, an evaluation was conducted on the general parameter pertaining to crashworthiness and the capacity for absorption of energy. The results reveal that an increase in the quantity of Carbon Fiber Reinforced Polymer (CFRP) layers within the stacking sequence of [0,90] affords enhanced potential for energy absorption. Conversely, the stacking sequence of [90] exhibits an incongruity with this trend, and achieves superior energy absorption capacity with a count of 4 CFRP layers rather than 8.
The present study indicates that carbon fiber reinforced polymer (CFRP) possessing a stacking sequence of [90] exhibits superior energy absorption capacity under both axial and oblique loading conditions at an inclination angle of 10 degrees. In contrast, the use of eight layers of CFRP with a stacking sequence of [0, 90] is found to yield better performance in achieving both axial and oblique loading up to 10 degrees.