Search published articles


Showing 1 results for Adhesive Fillet

Jamal Bidadi, Hamed Saeidi Googarchin,
Volume 14, Issue 3 (9-2024)
Abstract

Adhesively bonded joints are a highly effective method for achieving lightweight structural designs, yet assessing their long-term durability remains a significant challenge. Creep, a time-dependent effect caused by sustained mechanical loads, can result in viscous strain within adhesive materials, potentially leading to crack formation in bonded structures over extended periods. This study investigates the creep behavior of adhesive joints under sustained tensile loads, focusing on the effects of adhesive layer thickness and the presence of adhesive fillets. Creep tests conducted over 48 hours revealed that higher load levels result in greater strain accumulation, with thicker adhesive layers showing increased susceptibility to deformation. Additionally, joints with adhesive fillets demonstrated lower creep strain, indicating enhanced resistance to sustained loads. These findings emphasize the importance of adhesive layer thickness and fillet design in optimizing the long-term performance and durability of bonded joints, offering valuable insights for applications where creep resistance is critical for joint reliability and service life.

Page 1 from 1     

© 2022 All Rights Reserved | Automotive Science and Engineering

Designed & Developed by : Yektaweb