Showing 9 results for Ann
M. Manteghi, B. Abdi, A.a. Tofigh,
Volume 1, Issue 3 (5-2011)
Abstract
This article aims at strategic vision to technology and suggests a strategic planning for this purpose. The main emphasis in this article is on strategic report compilation in the framework of strategic vision and covers issues such as identification of strategic planning dimensions and strategic vision levels, technology priority setting, environment monitoring, focus on costumer needs, methods of strategic vision compilation and future research methods. This article also concentrates on R&D strategies in a separate section. Furthermore, a separate section is dedicated to strategic vision in automotive industry and issues are discussed related to Iran Khodro Co. strategic visions. At the end, a model is presented for strategic vision compilation.
S. Sanaye, M. Dehghandokht,
Volume 2, Issue 2 (4-2012)
Abstract
In this paper, mini-channel type evaporator which is new in mobile air conditioning (MAC) or automotive air
conditioning (AAC) systems is thermally modeled. The performance of mini-channel evaporator is also compared with
the laminated evaporator which is being currently used in automotive industries. The mini-channel evaporator was
constructed of two rows of parallel flow mini-channel tubes with inlet and outlet headers. The numerical results of
modeling the laminated and mini-channel evaporators validated with the corresponding experimental data which was
obtained from experiments performed on mobile air conditioning system in calorimeter test bench. The comparison of
modeling results of two evaporators showed good agreement with experimental data. The performance of laminated
and mini-channel evaporators were also compared under various operating conditions. The mini-channel evaporator
had higher cooling capacity (7.2%) and higher refrigerant pressure drop (45%) in comparison with the corresponding
values in laminated evaporator assuming the same external geometry. The outlet air temperature and enthalpy of minichannel
evaporator was also lower, 11% and 8% respectively, than that for laminated evaporator. This cause to reduce
the time period as well as power/fuel consumption for reaching the comfortable cabin temperature.
E. Alizadeh Haghighi, S. Jafarmadar, H. Taghavifar,
Volume 3, Issue 4 (12-2013)
Abstract
Artificial neural network was considered in previous studies for prediction of engine performance and
emissions. ICA methodology was inspired in order to optimize the weights of multilayer perceptron (MLP)
of artificial neural network so that closer estimation of output results can be achieved. Current paper aimed
at prediction of engine power, soot, NOx, CO2, O2, and temperature with the aid of feed forward ANN
optimized by imperialist competitive algorithm. Excess air percent, engine revolution, torque, and fuel
mass were taken into account as elements of input layer in initial neural network. According to obtained
results, the ANN-ICA hybrid approach was well-disposed in prediction of results. NOx revealed the best
prediction performance with the least amount of MSE and the highest correlation coefficient(R) of 0.9902.
Experiments were carried out at 13 mode for four cases, each comprised of amount of plastic waste (0, 2.5,
5, 7.5g) dissolved in base fuel as 95% diesel and 5% biodiesel. ANN-ICA method has proved to be selfsufficient,
reliable and accurate medium of engine characteristics prediction optimization in terms of both
engine efficiency and emission.
H. Shojaeefard , M. Hakimollahi , M. Kashefi,
Volume 4, Issue 2 (6-2014)
Abstract
Having a full understanding of the world’s social-economic situation is the success key for industries automotive manufacturing industry is an extremely competitive one usually there is no clear guideline among automotive companies about technological causes behind their success and failure. This research provides an investigation about the world’s economic situation and the environmental situation surrounded the automotive industry, than will focus on chines auto industry. Automotive manufacturers and suppliers view China as the largest combination of automotive market and low-cost manufacturing and supply base to appear in decades. Companies are deluged with information about the potential opportunities in China, but typically know very little about what the Chinese think about their automotive future. The steady influx of automotive manufacturers and suppliers over the past ten years has provided the Chinese with firsthand experience of what the impact of a world-class, high-volume automotive industry can mean to a country.
R. Haji Abdolvahab, Gh.r. Molaeimanesh,
Volume 7, Issue 4 (12-2017)
Abstract
Proton exchange membrane (PEM) fuel cells being employed in fuel cell vehicles (FCVs) are promising power generators producing electric power from fuel stream via porous electrodes. Structure of carbon paper gas diffusion layers (GDLs) applying in the porous electrodes can have a great influence on the PEM fuel cell performance and distribution of temperature, especially at the cathode side where the electrochemical reaction is more sluggish. To discover the role of carbon paper GDL structure, different cathode electrodes with dissimilar anisotropy parameter are simulated via lattice Boltzmann method (LBM). The distributions of temperature through the GDL as well as the distribution of temperature on the catalyst layer are presented and analyzed. The results indicate that when the carbon fibres are more likely oriented normal to the catalyst layer the distribution of temperature becomes more uniform. Besides, the maximum temperature occurs in this case.
Hashem Ghariblu,
Volume 12, Issue 2 (6-2022)
Abstract
This paper introduces a trajectory planning algorithm for long-term freeway driving for autonomous vehicles including different modes of motion. In the autonomous driving in a freeway, different maneuvers are needed, including free flow, distance adaption, speed adaption, lane change and overtaking. This paper introduces an algorithm that provides all of these driving scenarios in the trajectory planning for an autonomous vehicle. All maneuvers are classified and proper formulation for each driving mode formulated. Then, an algorithm is introduced to show the procedure of decision making and switching between all driving modes. The relative distances and velocities of the other peripheral and front vehicle from autonomous vehicle are considered as the main factors for decision making during the travelling in the freeway. By the developed simulation programming, validity and effectiveness of the algorithm are verified, and pseudo code and flowchart for the simulation programming are introduced. Later in two simulation studies, different driving conditions are generated and results have been discussed and analyzed by detail.
Mr. Mohammad Yar-Ahmadi, Mr. Hamid Rahmanei, Prof. Ali Ghaffari,
Volume 13, Issue 1 (3-2023)
Abstract
The primary purpose of each autonomous exit parking system is to facilitate the process of exiting the vehicle, emphasizing the comfort and safety of driving in the absence of almost any human effort. In this paper, the problem of exit parking for autonomous vehicles is addressed. A nonlinear kinematic model is presented based on the geometric relationship of the vehicle velocities, and a linear time-varying discrete-time model of the vehicle is obtained for utilizing the optimal control strategy. The proposed path planning algorithm is based on the minimization of a geometric cost function. This algorithm works for ample space exit parking in Single-Maneuver and tight spaces in Multi-Maneuver exit parking. Finally, an optimal discrete-time linear quadratic control approach is hired to minimize a quadratic cost function. To evaluate the performance of the proposed algorithm, the control system is simulated by MATLAB/Simulink software. The results show that the optimal control strategy is well able to design and follow the desired path in each of the exit parking maneuvers.
Mr Seyed Amir Mohammad Managheb, Mr Hamid Rahmanei, Dr Ali Ghaffari,
Volume 14, Issue 1 (3-2024)
Abstract
The turn-around task is one of the challenging maneuvers in automated driving which requires intricate decision making, planning and control, concomitantly. During automatic turn-around maneuver, the path curvature is too large which makes the constraints of the system severely restrain the path tracking performance. This paper highlights the path planning and control design for single and multi-point turn of autonomous vehicles. The preliminaries of the turn-around task including environment, vehicle modeling, and equipment are described. Then, a predictive approach is proposed for planning and control of the vehicle. In this approach, by taking the observation of the road and vehicle conditions into account and considering the actuator constraints in cost function, a decision is made regarding the minimum number of steering to execute turn-around. The constraints are imposed on the speed, steering angle, and their rates. Moreover, the collision avoidance with road boundaries is developed based on the GJK algorithm. According to the simulation results, the proposed system adopts the minimum number of appropriate steering commands while incorporating the constraints of the actuators and avoiding collisions. The findings demonstrate the good performance of the proposed approach in both path design and tracking for single- and multi-point turns.
Mr Amirhossein Jazari, Prof Ayat Gharehghani, Mr Soheil Saeedipour,
Volume 14, Issue 3 (9-2024)
Abstract
A novel liquid cooling system for pouch-type lithium-ion batteries (LIBs) is proposed by focousing on uniform temperatue disturbution and effective heat dissipation. The system utilizes a michrochannel cold plate with an innovative coolant disturbution design. This study proposes a novel microchannel disturbution path design with each microchannel dimensioning 1 mm2 and embeded in the battery's ciritical region to enhance the thermal contact among the LIB and the microchannels. This study aims to simulate and evaluate the performance of cooling system under varius Iranian environmental conditions (Tehran, Shiraz, Isfahan, and Bandar Abbas) and operational parametrs (channel pattern, flow rate) to achieve optimal battery temperature and reduce energy consumption.