Search published articles


Showing 29 results for Emission

S. Hassanzadeh Saraei, Sh. Khalilarya, S. Jafarmadar,
Volume 6, Issue 2 (6-2016)
Abstract

Modern diesel engines should have higher pollutant emissions standards with better performance and by using split injection strategies which could optimize the air – fuel mixture, this purpose could be achieved. After achieving the successful validation between modeling and experimental results for both single and double injection strategies, for the first time and in this paper, double injection strategies with new nozzle configuration were used in which number of nozzle holes were doubled and located below the previous holes and then double injection strategies were implemented in a case that for each pulse of injections upper or below holes were used, then this study focused on the effects of the new nozzle configuration holes angle in each pulse of injections. This study confirms that split injection could decrease Nox emission, because it has lower maximum in-cylinder temperature than single injection case due to its separate second stage of combustion, also results showed that using new nozzle configuration with two rows of holes could be more effective in decreasing pollutant emissions without any significant effects on engine performance.


T. Ouksel, A. Chelghoum, A. Mameri,
Volume 7, Issue 1 (3-2017)
Abstract


J. Zareei, A. Rohani, Wan Mohd,
Volume 8, Issue 1 (3-2018)
Abstract

To improve the engine performance and reduce emissions, factors such as changing ignition and injection timing along with converting of port injection system to direct injection in SI(spark-ignited) engines and hydrogen enrichment to CNG fuel at WOT conditions have a great importance. In this work, which was investigated experimentally (for CNG engine) and theoretically (for combustion Eddy Break-Up model and turbulence model is used) in a single- cylinder four-stroke SI engine at various engine speeds (2000-6000 rpm in 1000 rpm intervals), injection timing (130-210 crank angle(CA) in 50 CA intervals), ignition timing (19-28 CA in 2 degree intervals), 20 bar injection pressure and five hydrogen volume fraction 0% to 50% in the blend of HCNG. The results showed that fuel conversion efficiency, torque and power output were increased, while duration of heat release rate was shortened and found to be advanced. NOx emission was increased with the increase of hydrogen addition in the blend and the lowest NOx was obtained at the lowest speed and retarded ignition timing, hence 19° before top dead center. 


Sina Hassanzadeh Saraei, Shahram Khalilarya, Samad Jafarmadar, Saeed Takhtfirouzeh, Hadi Taghavifar,
Volume 8, Issue 4 (12-2018)
Abstract

Pollutant emissions from diesel engines are significantly affected by fuel injection strategies that could reduce NOx and Soot emissions. For the first time and in this study, numerical simulations were performed to consider the influences of changing the injection duration in each pulse of the double injection strategies on in-cylinder parameters and pollutant emissions. Results confirmed that double injection strategies could influence the in-cylinder temperature, which leads to a reduction in NOx and soot emissions. Additionally, it is seen that decreasing the injection duration could increase the in-cylinder peak pressure and temperature. It could also reduce the soot emission owing to the better fuel atomization. Moreover, RATE+0.5CA case, which injection duration for each pulse increases 0.5 CA, was selected to be the optimum case in reduction of pollutant emissions.
 
Dr. Ali Mirmohammadi, Eng. Amin Kalhor,
Volume 9, Issue 4 (12-2019)
Abstract

According to the global air pollution Crisis, it seems necessary to finding a way for cars pollutions. The Combination of alcoholic fuels with gasoline is one of the methods to reduce pollutions. For optimizing engine performance, fuel availability, toxicity and political advantage, a blend of ethanol, methanol and gasoline is likely to be preferable to using any of these individual substances alone. So the purpose of this paper is studying methanol, ethanol and gasoline blend effect on engine emissions at different engine speed. The simulated model was validated in different RPMs of gasoline engine at full load condition. The effect of combined fuel injection in the simulated model was investigated and compared with the experimental results. The results of simulation have good agreement with experiments. The results show that by ethanol and methanol with gasoline blend CO and HC emissions are lower than gasoline mode, but the NOx and CO2 pollutants increases.
 
Saeed Chamehsara, Mohammadreza Karami,
Volume 9, Issue 4 (12-2019)
Abstract

Changing various parts of different types of engines in the maintenance phase was always a remarkable question. Purpose of the present study is identifying the performance and emissions of a diesel-fueled engine (OM457) before and after replacing connecting rod and crankshaft with another engine (OM444) in the same engine family.

At the first step, a solid model was made then some CFD analyses were done and, results were compared with previous studies for validation after that in the CFD modeling the impact of these parts replacement were observed, and the performance and emissions of this engine were compared with data before replacements.

As the result of these replacements, compression ratio and performance were decreased. HC and CO were increased due to lower air-fuel ratio, and NOX was decreased because of the lower temperature of in cylinder. Lowering the CR of a diesel engine will reduce the NOx emission numerously but the increase in other emissions will be slight. So for the environment issues lowering the CR will be a practical and low cost method.


Mohammad Mahdi Rastegardoost, Sepehr Heydari, Dr. Pouria Ahmadi, Karen Abrinia,
Volume 9, Issue 4 (12-2019)
Abstract

Nowadays, with increasing environmental pollution and damages that threaten the health of the community, a lot of research is being conducted on reducing the emission from transportation sector as one of the main sources of total worldwide emissions. It is confirmed that one of the ways to reduce emission is to switch from fossil-based fuels to more environmentally benign fuels. Among the options, electric vehicles (EVs) have proven themselves as one of the best options. In this research study, a solar-based EV which is developed and built at University of Tehran is studied.  The environmental impacts assessment along with the energy consumption of this solar-electric vehicle is investigated
Moein Nili Ahmadabadi, Dr. Pouria Ahmadi, Mahdi Soleymani, Seyed Alireza Atyabi, Dr. Mohammadjafar Hadad,
Volume 9, Issue 4 (12-2019)
Abstract

One of the most significant issues of recent decades is pollution and dangers that may threat the environment. Different approaches were presented to protect the environment and target various sources of pollution. Old vehicles are one of the major sources of pollution in megacities as they consume and emit a lot of emissions. Therefore governments in different countries try to levy tax on pollution to motivate people to drive environment friendly and more efficient vehicles.
Tehran is one of the cities suffering rigorously from poor air quality. As a result, approximately 44 days in each year the air quality reckons as unhealthy for all residents. One of the suggested solutions is replacing conventional taxis across the city with hybrid electric vehicles. In this article this solution for the city of Tehran, Iran will be discussed and its feasibility will be evaluated using life cycle assessment.  
In order to conduct this, first data associated with air quality, pollution and taxis distribution in the city were presented. Then different designated vehicles were evaluated based on their technical performance and the emission they generate in different stages. Using the proposed model a comprehensive cost is defined and different vehicles were compared and the most viable choices by various considerations is introduced.
Mr. Vahid Manshaei, Dr. Mohammad Javad Noroozi, Mr. Ali Shaafi,
Volume 10, Issue 2 (6-2020)
Abstract

In this research, the separate and simultaneous effects of pilot-main injection dwell time, pilot fuel quantity, and hydrogen gas addition on combustion characteristics, emissions formation, and performance in a heavy-duty diesel engine were investigated. To conduct the numerical study, valid and reliable models such as KH-RT for the break-up, K-Zeta-F for turbulence, and also ECFM-3Z for combustion were used. The effects of thirty-one different strategies based on two variables such as pilot-main injection dwell time (20, 25, 30, 35, and 40 CA) and pilot fuel quantity (5, 10, and 15% of total fuel per cycle) on NDC and DHC were investigated. The obtained results showed that by decreasing pilot-main injection dwell time due to shorter combustion duration and higher MCP, MCT, and HRRPP, amounts of CO and soot emissions decreased at the expense of high NOx formation. Also, increasing pilot fuel quantity due to higher combustion temperature and less oxygen concentration for the main fuel injection event led to an increase of NOx and soot emissions simultaneously. The addition of H2 due to significant heating value has increased IP and improved ISFC at the expense of NOx emissions but considerably decreased CO and soot emissions simultaneously.
Javad Zareei, Saeed Ahmadi,
Volume 10, Issue 3 (9-2020)
Abstract

In internal combustion engines, the turbocharger and alternative fuels are two important factors affecting engine performance and exhaust emission. In this investigation, a one-dimensional computational fluid dynamics with GT-Power software was used to simulate a six-cylinder turbocharged diesel engine and the naturally aspirated diesel engine to study the performance and exhaust emissions with alternative fuels. The base fuel (diesel), methanol, ethanol, the blend of diesel and ethanol, biodiesel and decane was used. The results showed that decane fuel in the turbocharged engine has more brake power and torque (about 3.86%) compared to the base fuel. Also, the results showed that the turbocharger reduces carbon monoxide and hydrocarbon emissions, and biodiesel fuel has the least amount of carbon monoxide and hydrocarbon among other fuels. At the same time, the lowest NOX emission was obtained by decane fuel. As a final result can be demonstrated that the decane fuel in the turbocharged engine and the biodiesel fuel in the naturally aspirated engine could be a good alternative ratio to diesel fuel in diesel engines.
Shayan Sadeghi, Samane Ghandehariun,
Volume 10, Issue 3 (9-2020)
Abstract

A comparative full life cycle assessment of a gasoline vehicle and a fuel cell vehicle (FCV) with five different fuel cycles including steam methane reforming (SMR), coal gasification, photovoltaic (PV), solar thermal, and grid-based electrolysis is presented in this paper. The results show that the total greenhouse gas emissions (GHG) are mainly found in the materials production and the component manufacturing stages of the FCV. Among various hydrogen production methods, the FCV with PV electrolysis has the lowest GHG emissions of 0.13 kg CO2 eq./km. The total GHG emissions of the gasoline vehicle are estimated as 0.30 kg CO2 eq./km mainly from the operation stage. An uncertainty analysis is carried out to assess the effects of variations of different input parameters on the total emissions. With a 95% level of confidence, the total emissions of the FCV with PV electrolysis is 0.18±0.05 kg CO2 eq./km. The component manufacturing and assembly stage drives the total GHG emissions uncertainty the most.
Dr Ali Keshavarz, Fereshteh Khodamrezaee, Dr Sadegh Seddighi, Sepide Sarmast,
Volume 10, Issue 4 (12-2020)
Abstract

This work investigates the effects of hydrogen addition to compressed natural gas (CNG) on combustion characteristics and emission reduction using a closed cycle simulation with exact geometry of piston and cylinder head. The effect of equivalence ratio on combustion characteristic were investigated using a spark ignition (SI) engine fueled with CNG and addition of 10% vol, 15% vol and 20%vol hydrogen. Two different speed of 1500 and 3000 rpm have considered at full load condition. The modeling includes ECFM combustion model combined with K-ζ-f turbulent modeland has been done by AVL Fire software. Different volume fraction of Hydrogen with different excess air modeled and validated with experimental data. The validation procedure included in-cylinder pressure profile, maximum pressure, angle of maximum pressure, indicated mean effective pressure, and carbon monoxide (CO) emission showing a good agreement with the experimental results. The value of the peak pressure increases by hydrogen addition and it takes place sooner as the hydrogen volume fraction increases. However, the mean effective pressure drops 3.5%, 7% and 15% for HCNG 10, HCNG15 and HCNG20, respectively. CO emission decreases by increasing the hydrogen volume fraction. The results also indicate that hydrogen addition in lean combustion causes more CO reduction compared to the fuel-rich mixtures.
Mr Mani Ghanbari, Dr Gholamhassan Najafi, Dr Barat Ghobadian,
Volume 10, Issue 4 (12-2020)
Abstract

In this paper, the exhaust emissions of a diesel engine operating with different nanoparticles additives in diesel-biodiesel blended fuels were investigated. Firstly multi wall carbon nano tubes (CNT) with concentrations of 40, 80 and 120 ppm and nano silver particles of 40, 80 and 120 ppm with nano-structure were produced and then added as additives to the diesel-biodiesel blended fuels. A four-stroke six cylinders diesel engine was fuelled with the new fuels and operated at different engine speeds. The experimental results showed that CO2 emission increased by 17% with an increase in nanoparticles concentrations at diesel-biodiesel blended fuel. Also, CO emission with nanoparticles added to biodiesel-diesel fuel was 25.17% lower than neat diesel fuel. The results showed a decrease up to 28.56% in UHC emission using the silver nano-diesel-biodiesel blended fuel. NOx emission increased with adding nanoparticles to the blended fuels compared to the neat diesel fuel. The experimental results demonstrated that silver & CNT nanoparticles can effectively be used as additive in diesel-biodiesel blended fuel in order to enhance complete combustion of the air-fuel mixture and reduce the exhaust emissions. Consequently the nano biodiesel can be considered as an alternative and environment friendly fuel for CI engine. 

Dr. Mohammad Javad Noroozi, Mr. Mahdi Seddiq, Mr. Hessamedin Habibi,
Volume 10, Issue 4 (12-2020)
Abstract

Due to very low PM and NOx emissions and considerable engine efficiency, dual-fuel combustion mode such as RCCI strategy attracted lots of attention compared to other combustion modes. In this numerical research work, the impacts of direct injection timing and pressure of diesel fuel on performance and level of engine-out emissions in a diesel-butanol RCCI engine was investigated. To simulate the combustion process, a reduced chemical kinetic mechanism, which consists of 349 reactions 76 species was used. The influence of thirty-six various strategies based on two diesel spraying characteristics such as injection pressure (650, 800, 1000, and 1200 bar) and diesel spray timing (300 to 340 CA with 5 CA steps) have been examined. Results indicated that, under the specific operating conditions like 1000-bar spray pressure by direct injection at 45 CA BTDC and the spray angle of 145 degrees, the level of cylinder-out pollutants such as CO (up to 26%), NOx (about 86%), PM (by nearly 71%) and HC (about 17.25%) have been simultaneously reduced. Also, ISFC decreased by about 2.3%, IP increased by about 2.4%, and also ITE improved by nearly 2% compared to the baseline engine operating conditions.
Behzad Borjian Fard, Ayat Gharehghani, Bahram Bahri,
Volume 11, Issue 2 (6-2021)
Abstract

Reactivity control compression ignition (RCCI) engines have demonstrated high-efficient and clean combustion but still suffer from ringing operation at upper load and production of unburned hydrocarbon (uHC) and carbon monoxide (CO) emissions at lower load. In this study, statistical analysis and experimental testing were conducted to consider the effects of input parameters such as intake temperature (Tin), equivalent ratio (Φ) and engine speed on emissions, combustion noise and performance of a 0.5 liter RCCI engine using response surface method (RSM) with the aim to minimize emissions and combustion noise and to maximize parameters of performance. The developed models for measured responses like uHC, CO, nitrogen oxides (NOx) and calculated responses such as indicated mean effective pressure (IMEP) and combustion noise level (CNL) were statistically considered to be significant by analysis of variance (ANOVA). Interactive effects between Tin, Φ and engine speed for all operating points were analyzed by 3-D response surface plots. The results from this study indicated that at optimum input parameters, the values of uHC, CO, NOx, IMEP and CNL were found to be 90.3 (ppm), 106.8 (ppm), 248.2 (ppm), 11.7 (bar) and 87 (db), respectively. The models were validated by confirmatory tests, indicating the error in prediction less than 5%.
Dr Javad Zareei, Abbas Rohani,
Volume 11, Issue 2 (6-2021)
Abstract

Diesel engines are the most trusted sources in the transportation industry. They are also widely used in the urban transportation system. Most pollutants are related to these engines. Therefore, it is important to increase the performance and reduce exhaust emissions of these engines. Alternative fuels are key to meeting upcoming targets.
An experimental and numerical study was performed to investigate the effect of diesel fuel and hydrogen addition to diesel fuel from 0 to 30% on performance and exhaust emissions. Also in this research for changing diesel fuel, an indirect injection engine converted to direct injection engine. The simulation study was conducted by Star cd codes and experimental investigation was carried out on a diesel engine (Perkins 1103A-33TG1), three- cylinders, and four-stroke with maximum engine power 72.3hp at 1800 rpm. The results from this study showed that the increase of hydrogen to diesel fuel improves the thermal efficiency, resulting in lower specific fuel consumption. Also, the results showed that adding hydrogen until 30%, the cylinder pressure increase by about 9% and occurred the delay of peak pressure about 8 degrees of a crank angle compared to diesel fuel. The other obtained results in emission with 30%H2+Diesel showed the soot emission reduced 11.3%, HC and CO reduced nearly 36%, but NOx increased by about 8.3% due to high combustion temperature.
Mani Ghanbari, Lotfali Mozafarivanani, Masoud Dehghanisoufi,
Volume 11, Issue 3 (9-2021)
Abstract

The fuel system in internal combustion engines is one of the most accurate and sensitive parts and its operation has a significant effect on the quality of combustion process and the content of exhaust emissions. In this study, the effect of fuel filter life on lambda and exhaust emissions of engine has been investigated using the response surface method (RSM). The results showed that the elevated values of lambda (1.042) and CO (0.88%) occur at the engine speed of 5000 rpm with a fuel filter life (FFL) of 60,000 km. Also, the highest CO2 content was obtained as 14.9% at 1000 rpm with a new fuel filter (0 km). Moreover, the highest amount of HC emission (215 ppm) was measured at 1000 rpm and using FFL of 60,000 km. The results showed that increasing the fuel filter life increases the exhaust emissions of the engine. Therefore, timely replacement of the fuel filter, in addition to increasing engine performance, will reduce air pollution, especially in big cities. 

Dr Ali Qasemian, Mr Sina Jenabihaghparast, Mr Pouria Azarikhah,
Volume 12, Issue 3 (9-2022)
Abstract

In the current study, the hydrogen-addition influence on the performance of an SI engine using a gasoline-ethanol blend is investigated numerically. The simulation and validation of the model are carried out in order to evaluate the engine performance using conventional gasoline (G100) and the blend of gasoline and ethanol (G75E25). Furthermore, the hydrogen is added to the gasoline–ethanol blend (G50E25H25) to improve the engine thermal efficiency and reduce the amount of brake specific fuel consumption (BSFC) which leads to the reduction in greenhouse gas (GHG) emissions. The brake specific carbon dioxide (BSCO2) is also studied in this paper. Results show that the addition of hydrogen increases the brake power and thermal efficiency, moderates the BSFC, and decreases the maximum temperature of combustion chamber which reduces the production of greenhouse gases as well as BSCO2. In comparison with pure gasoline, by using G50E25H25, the maximum temperature of in-cylinder gas decreased by 12.55%, 10.82%, and 13.43% at 2000, 4000, and 6000 rpm, respectively. It is also evaluated that the lowest amount of BSCO2 is related to G50E25H25 in most of the engine speeds. The bio-fuel of G75E25 and pure gasoline are placed in next positions, respectively.
Mr. Hosein Hamidi Rad, Prof. Mohsen Esfahanian, Prof. Saeed Behbahani,
Volume 13, Issue 3 (9-2023)
Abstract

This study examines the impact of a fuzzy logic-based control strategy on managing peak power consumption in the auxiliary power unit (APU) of a hybrid electric bus. The APU comprises three components: an air compressor, a power steering system, and an air conditioning system (AC) connected to an electric motor. Initially, these components were simulated in MATLAB-SIMULINK software. While the first two were deemed dependent and independent of vehicle speed, respectively, the stochastic behavior of the steering was emulated using the Monte Carlo method. Subsequently, a fuzzy controller was designed and incorporated into the APU to prevent simultaneous operation of the three accessories as much as possible. The results of repeated simulations demonstrated that the designed fuzzy controller effectively distributed the operation of the accessories throughout the driving cycle, thereby reducing overlaps in auxiliary loads. Consequently, the APU's average and maximum power consumption exhibited significant reductions. Furthermore, through multiple simulations with an upgraded power system model integrating the new APU-controller package, it was established that the proposed strategy for managing auxiliary loads in the bus led to lower fuel consumption and emissions.

Page 1 from 2    
First
Previous
1
 

© 2022 All Rights Reserved | Automotive Science and Engineering

Designed & Developed by : Yektaweb