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Abstract 

A new method based on principal component analysis (PCA) and artificial neural networks (ANN) is 

proposed for fault diagnosis of gearboxes. Firstly the six different base wavelets are considered, in which 

three are from real valued and other three from complex valued. Two wavelet selection criteria Maximum 

Energy to Shannon Entropy ratio and Maximum Relative Wavelet Energy are used and compared to select 

an appropriate wavelet for feature extraction; next, the continuous wavelet coefficients (CWC) are 

evaluated for some different scales. As a new method, the optimal range of wavelet scales is selected based 

on the maximum energy to Shannon entropy ratio criteria and consequently feature vectors are reduced. In 

addition, energy and Shannon entropy of the wavelet coefficients are used as two new features along with 

other statistical parameters as input of the classifier. To prevent the curse of dimensionality problem, the 

principal component analysis applies to this set of features. Finally, the gearbox faults are classified using 

these statistical features as input to machine learning techniques. Four artificial neural networks are used 

for faults classifications. The test result showed that the MLP identified the fault categories of gearbox 

more accurately for both real wavelet and complex wavelet and has a better diagnosis performance as 

compared to the RBF, LVQ and SOM. 

 
Keywords: gearbox, wavelet, PCA, MLP, RBF, SOM, LVQ. 

1. Introduction 

Gearbox is one of the most popular machines in 

the world. The importance and need of this machine 

are clear; so, fault diagnosis of them is a core research 

area in the condition monitoring field. Fault detection 

and diagnosis of gearboxes [1, 2] is one of the most 

common and intricate challenges in industries as a 

result of frequent gear defects in machines [3,4]. 

Vibration signal processing of gears [5] is categorized 

as a reliable method in condition monitoring. To 

analyze vibration signals, various techniques such as 

time [6,7], frequency [8], and time–frequency domain 

[9] have been extensively studied. Among these, 

wavelet transform [10–13] has progressed in the last 

two decades, and outweighs the other time–frequency 

methods, although it is lacking in a few aspects as 

well. Wavelet transform (WT) has attracted many 

researchers' attention recently. The wavelet transform 

was utilized to represent all possible types of 

transients in vibration signals generated by faults in a 

gearbox [14]. Among the various methods for 

condition monitoring of machinery, artificial neural 

network (ANN) have become in the recent decades 

the outstanding method exploiting their non-linear 

pattern classification properties, offering advantages 

for automatic detection and identification of gearbox 

failure conditions, whereas they do not require an in-

depth knowledge of the behavior of the system. A 

neural network was used to diagnose a simple gear 

system after the data have been pre-processed by the 

wavelet transform [15]. Wavelet transform was used 

to analyze the vibration signal from the gear system 

with pitting on the gear [16]. Hence, based on the 

literature review there exist a wide scope to explore 

machine learning methods like ANN, SVM and 

PSVM for fault diagnosis of the gearbox. Samantha 

and Balushi [17] have presented a procedure for fault 

diagnosis of rolling element bearings through 

artificial neural networks. The characteristic features 

of time-domain vibration signals of the rotating 

machinery with normal and defective bearings have 

used as inputs to the ANN. Lei et al. [18] have 

proposed a method for intelligent fault diagnosis of 

rotating machinery based on wavelet packet transform 

(WPT), empirical mode decomposition (EMD), 

dimensionless parameters, a distance evaluation 
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technique and radial basis function (RBF) network. 

Paya et al. [11] presented artificial neural network 

served as a classifier to diagnose faults of rotating 

machinery. In this study, the method by using 

multilayer artificial neural networks on the sets of 

preprocessed data by wavelet transforms single and 

multiple faults have a direct effect on the diagnostic 

effectiveness of distinct group faults. Rafiee et al. 

[19] have developed a procedure which 

experimentally recognizes gears and bearing faults of 

a typical gearbox system using a multilayer 

perceptron neural network. Rafiee and Tse [20] have 

presented a time–frequency-based feature recognition 

system for gear fault diagnosis using autocorrelation 

of continuous wavelet coefficients. It has been shown 

that the size of vibration signals can be reduced with 

minimal loss of significant frequency content. Rafiee 

et al. [21] have shown that the Daubechies 44 wavelet 

is the most effective for both faulty gears and 

bearings. Using the genetic algorithm, Rafiee et al. 

Optimized the decomposition level of the WPT, the 

order of the Daubechies wavelet function, and 

number of neurons in the hidden layer of an ANN 

identify slight-worn, medium-worn and broken-tooth 

of gears faults perfectly [22]. Kankar et al. [23] have 

conducted a comparative experimental study of the 

effectiveness of ANN and SVM in fault diagnosis of 

ball bearings and concluded that the classification 

accuracy for SVM is better than of ANN. Saravanan 

and Ramachandran [24] investigated the usage of 

discrete wavelets for feature extraction and 

application of artificial neural network for 

classification. In this study, a feed-forward multilayer 

perceptron (MLP) neural network is utilized for 

classification. Regarding the references that have 

shown that neural networks can be effectively used in 

the diagnosis of various gear faults, in this study, a 

feed-forward multilayer perceptron (MLP) neural 

network is utilized for classification. In addition, two 

new neurons are considered as inputs of the network 

to enhance the accuracy of the ANN. Hajnayeb et al. 

[25] investigated, a system based on artificial neural 

networks (ANNs) to diagnose different types of fault 

in a gearbox. An experimental set of data was used to 

verify the effectiveness and accuracy of the proposed 

method. The system was optimized by eliminating 

unimportant features using a feature selection method 

(UTA method). This method of feature selection was 

compared with genetic algorithm results. Bafroui and 

Ohadi [26] used a feed-forward multilayer perceptron 

(MLP) neural network for fault diagnosis of an 

automobile gearbox with Morlt wavelet. In this 

research, to improve the speed of fault diagnosis with 

high efficiency performance, the optimal scales of 

wavelet were selected based on the maximum Energy 

to Shannon Entropy ratio criteria. Gharavian et al. 

[27] used from FDA-based and PCA-based features 

for fault diagnosis of automobile with Gaussian 

mixture model and K nearest neighbor.  

The paper is organized as follows. Section 2 is 

dedicated to the CWT and wavelet selection criterion 

methods. Section 3 is dedicated to the feature 

extraction of CWC. In Section 4, artificial neural 

network such as MLP, SOM, LVQ and RBF is given. 

In the following sections, we will describe concisely 

experimental setup, data collection and fault 

description. The effectiveness of the proposed method 

will be investigated through a numerical simulation 

study in Section 6. The conclusion of this paper is 

given in Section 7. 

2. Continuous Wavelet Transform  

The principles of continuous wavelet transform 

are presented in this section. Wavelet transform 

supplies a power tool that can be accustomed to detect 

both stationary and transitory signals. The wavelet 

technique has special benefits for describing signals at 

various localization levels in time, in addition to 

frequency domains [28]. 

The continuous wavelet transform of a signal x(t) 

is defined as follows:  

  (   )  ∫  ( )    
  

  
( )                                 (1) 
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) (

(   )

 
)                                        (2) 

is called daughter wavelet derived from mother 

wavelet ψ(t) which in this definition, it must be real 

and satisfy ∫ ( )    . In Eq. (2), a and b are real 

value parameters, denoting scale and translation, 

respectively. After acquiring the vibration signals in 

the time domain, it is processed to obtain feature 

vectors. The continuous wavelet transform is used for 

obtaining the wavelet coefficients of the signals. The 

statistical parameters of the wavelet coefficients are 

extracted, which make up the feature vectors. 

2.1. Maximum Relative Wavelet Energy 

criterion 

Relative Wavelet Energy (RWE) is considered as 

time-scale density that can be used to detect a specific 

phenomenon in time and frequency planes. RWE 

gives information about the relative energy with 

associated frequency bands and can detect the degree 

of similarity between segments of a signal [29, 30]. 

The energy at each resolution level n, will be the 

energy content of the signal at each resolution is 

given by
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Where ‘m’ is the number of wavelet coefficients 

and      is the ith wavelet coefficient of nth scale. The 

total energy can be obtained by  

       ∑ ∑ |    |
 
 ∑  ( )                               (4) 

Then, the normalized values, which represent the 

Relative Wavelet Energy, is the energy probability 

distribution, defined as [31] 

   
 ( )

      
                                                               (5) 

Where ∑      , and the distribution,   , is 

considered as a time scale density. The total energy is 

calculated for each scale and for vibration signals at 

different rotor speed 1800, 2100, 2400, 2700 and 

3000 RPM and for different loading conditions using 

healthy and faulty bearings. Relative Wavelet Energy 

is calculated for each scale by taking the ratio of total 

energy of nth scale and sum of total energy of all 

scales.  

2.2. Maximum Energy to Shannon Entropy ratio 

criterion 

An appropriate wavelet is selected as the base 

wavelet, which can extract the maximum amount of 

energy while minimizing the Shannon entropy of the 

corresponding wavelet coefficients. A combination of 

the energy and Shannon entropy content of a signal’s 

wavelet coefficients is denoted by energy to Shannon 

entropy ratio [31] and is given as 
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 ( )

        ( )
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Where entropy of signal wavelet coefficients is 

given by 

        ( )   ∑   
 
                                      (7) 

Where    is the energy probability distribution of 

the wavelet coefficients, defined as 

   
|    |

 

 ( )
                                                                (8) 

With ∑      
   , and in the case of      for 

some i, the value of           is taken as zero. 

3. Feature extraction 

In a classification task, a very high-dimensional 

feature vector, e.g. the features obtained from CWT 

analysis, typically causes the curse of dimensionality 

problem; moreover, using such features for training 

classifiers may be a time consuming procedure. In 

such a case, high dimension data could be projected 

on a manifold with a lower dimension. There are 

various approaches for dimension reduction in the 

literature, which one of them is introduced in the 

present study. 

 

3.1. Principle Component Analysis 

 

Principal component analysis (PCA) is an 

important method developed by Hotelling in 1936 

(see the monograph on PCA by Jolliffe [32] or books 

[33, 34]. As stated in [32] and recently confirmed by 

He et al. [35], the PCA method has been used 

extensively in the past and still remains as one of the 

most popular methods used for data mining, feature 

extraction, data reduction and visualization. Two 

various definitions for PCA are introduced: The 

maximum variance and minimum error formulations. 

In the first definition, PCA is assumed as a 

transformation that projects data to a new space with 

lower dimension than the original data in which, the 

data variances on the new axes are maximized. In the 

second interpretation, it projects data into a reduced-

dimension space that by reconstructing original 

samples, the minimum error occurs. Let’s assume xn: 

n=1: N is a set of data sample vectors in RD which 

their mean is zero. This data can be described with a 

linear combination of a set of orthonormal basis 

vectors {ui : i =1,…, D} as given by 

   ∑      
 
                                                          (9) 

Where αni is obtained from the inner product of 

xn and ui (       
     coefficients for any data 

sample). Data samples could be described by the basis 

vectors, as given by 

   ∑ (  
   )  

 
                                                   (10) 

It is assumed that the first M dimensions describe 

a new basis. Without loss of generality, xn can be 

projected to a new subspace ( ̃ ) 

 ̃  ∑      
 
    ∑     

 
                                  (11) 

In Eq. (11), zni (i=1,…, M) is calculated for each 

data sample individually and bi are constant for all of 

the data samples. Choosing appropriate values for ui 

and bi is performed such that the distortions 

introduced by dimension reduction is minimized 

(minimization of {  
 

 
∑     ̃ 

  
    ).  

This minimization is straight forward using 

Lagrange multipliers, as described in [34]. ui is the 

first M eigenvectors of covariance matrix of data 

points (S), corresponding to the M largest eigenvalues 

(λi) of S matrix. The parameter d is the percent of 

distortion occurs by the dimension reduction as 

defined in Eq. (12) 

  
∑   

 
     

∑   
 
   

                                                 (12)
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In practice, M is chosen such that d is less than 

one percent. In this research, the PCA method is used 

for the dimension reductions [27]. 

 

4. Artificial Neural Network (ANN) 

After the dimension reduction, a proper classifier 

should be trained for the fault sorting. In this paper, 

four different artificial neural network classifiers are 

exploited. ANN is one of the approaches to forecast 

and validate using computer models with some of the 

architecture and processing capabilities of the human 

brain [36]. The technology that attempts to achieve 

such results is called neural computing or artificial 

neural networks. ANN mimics biological neurons by 

simulating some of the workings of the human brain. 

An ANN is made up of processing elements called 

neurons that are interconnected in a network. The 

artificial neurons receive inputs that are analogous to 

the electro-chemical signals that natural neurons 

receive from other neurons. By changing the weights 

given to theses signals, the network learns in a 

process that seems similar to that found in nature. i.e., 

neurons in ANN receive signals or information from 

other neurons or external sources, perform 

transformations on the signals, and then pass those 

signals on to other neurons. The way information is 

processed and intelligence is stored depends on the 

architecture and algorithms of ANN. A main 

advantage of ANN is its ability to learn patterns in 

very complex systems. Through learning or self-

organizing process, they translate the inputs into 

desired outputs by adjusting the weights given to 

signals between neurodes. 

 

4.1 Multi-Layer Perceptron (MLP) 

 

In this paper, a feed-forward MLP neural network 

is used for classification of the extracted features 

from CWT. A multilayer neural network that is a 

network with multiple layers of neurons (usually three 

layers), namely an input layer that obtains signals 

from a particular supplier, a hidden layer that 

processes the data and an output layer that sends 

processed data to outside [37, 38]. The back 

propagation of an ANN assumes that there is a 

supervision of learning of the network. The method of 

adjusting weights is designed to minimize the sum of 

the squared errors for a given training data set: 

 

 

j – Identifies a receiving node, 

i – denotes the node that feeds a second node, 

I – denotes the input to a neuron, 

O – Denotes output of a neuron, 

Wij – denotes the weights associated with the 

nodes. 

Each non-input node has an output level Oj where 

   
 

   
   

     ∑                            (13) 

Where Oi is each of the signals to node j (i.e., the 

output of node of i). The derivation of the back 

propagation formula involves the use of the chain rule 

of partial derivatives and equals: 

 

    
    

    
 (

    

   
) (

   

   
) (

   

    
)            (14) 

Where by convention the left-hand side is denoted by 

δij, the change in the sum of squared errors (SSE) 

attributed to Wij. Now error is given by 

   (     )              ∑(     )
                 (15) 

Therefore, 

(
    

   
)    ∑                                               (16) 

From the output of the output node, we obtain, 

(
   

   
)    (    )                                                (17) 

The input to an input node is    ∑     . 

Therefore the change in the input to the output node, 

resulting from the previous hidden node, i, is 

(
   

    
)                                                                (18) 

Thus, from the above equations, the jth delta is 

         (    )                                       (19) 

Now the old weight is updated by the following 

equation: 

    (   )              (   )                 (20) 

For the hidden layers, the calculations are similar. 

The only change is how the ANN output error is back 

propagated to the hidden layer nodes. The output 

error at the ith hidden node depends on the output 

errors of all nodes in the output layer. This 

relationship is given by 

   ∑                                                          (21) 

After calculating the output error for the hidden layer, 

the update rules for the weights in that layer are the 

same as the previous update [39, 40]. 

4.2. Self-organizing maps (SOM) 

As shown in Fig. 1, the SOM neural network 

structure is composed by input layer and competitive 

layer. Input layer is a one-dimensional vector, and the 

competition level is a two-dimensional planar array. 

The whole network is realized by connecting the 

neurons of the input layer and the competitive layer. 
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SOM can find similarity of the input data 

automatically, and put them together on the network. 

The learning algorithm is as follows.  

(1) Choose a smaller random value for initial 

weight vector   ( )(         ) . Each   ( )  is 

different from others [41], and l is the number of 

neurons in the network. 

(2) Input vector   (             )  to the 

input layer. 

(3) Calculate the Euclidean distance between the 

weight vectors of the map layer and the input vector. 

The distance between the jth neuron and the input 

vector is expressed as follows: 

   ‖    ‖  √∑ (  ( )     ( ))
  

              (22) 

Where ωij is the weight between neuron i of the 

input layer and neuron j of the map layer. A neuron 

called winning neuron, which is the nearest neuron 

from the input vector, is obtained by calculation, and 

it is denoted as j*. The collection of neighboring 

neurons is also acquired simultaneously. 

(4) Fix weight of the output neuron j* and its 

neighboring neurons as follows: 

        (   )     ( )   ( )(  ( )     ( )) (23) 

Where η(t) is a constant between 0 and 1. 

 ( )  
 

 
      ( )     (  

 

     
)                      (24) 

(5) Calculation of output as: 

    (    ‖    ‖)                                        (25) 

Where f (*) is a function or other non-linear 

function between 0 and 1. 

(6) The calculation is finished if the results can 

meet the requirements, otherwise it should return to 

step (2) and repeat the process [41]. 

 

4.3. Learning vector quantization (LVQ) 

 

Learning vector quantization [42] is a supervised 

machine learning technique in which the structure of 

the input space is exploited so that the size of the 

input data can be reduced which results in less 

computational time. LVQ is based on vector 

quantization in which an input space is divided into a 

number of distinct regions and for each region a 

reconstruction vector is defined. When a new vector 

is presented to the quantizer, the region in which the 

vector lies is first determined, and is then represented 

by the reproduction vector for that region. The 

collection of possible reproduction vectors is called 

the code book of quantizer, and its members are 

called code words. The SOM algorithm provides an 

approximate method for computing the Voronoi 

vectors in an unsupervised manner, with the 

approximation being specified by the synaptic weight 

vectors of the neurons in the feature map. Therefore, 

we can say that firstly SOM can be employed for the 

computation of the feature map and secondly LVQ is 

applied, which provides a mechanism for the final 

tuning of a feature map. Hence LVQ is said to be 

supervised version of SOM [43]. Although there are 

separate algorithms in the literature on LVQ, the 

LVQ1 and LVQ2 algorithm have been used in this 

paper [44].

 
Fig1. Structure of SOM neural network [41]. 

 
Fig2. RBF neural network architecture: R=number of elements in input vector, S1=number of neurons in layer 1, S2=number of neurons in 

layer 2, wj=number of weights in layer 1 [46].
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4.4. Radial basis function neural network 

The RBF neural network [45] is a feed forward 

network with its architecture as shown in Fig. 2. It 

consists of three layers: an input layer of R neurons, a 

hidden radial basis layer of S
1
 neurons and an output 

linear layer of S
2
 neurons. The information of the 

input neurons will transfer to the neurons in the 

hidden layer. The RBF in the hidden layer will 

respond to input information, and then generates the 

outputs in the neurons of the output layer. The 

advantage of the RBF network is that the hidden 

neurons will have non-zero response if the minimum 

of a function is in the pre-defined, limited range of the 

input values, otherwise, the response will be zero. 

Therefore, the number of active neurons is smaller 

and the time required in training the network is less. 

Hence, the RBF network is also referred to as the 

local range network. In the RBF neural network, the 

transfer function of the hidden layer is a Gaussian 

function 

      [ 
(    )

 
(    )

   
 ]                        (26) 

Where Aj is the output of the jth neuron in the 

hidden layer, p is the input mode, cj is the center of 

the jth neuron Gaussian function.   
  is the unitary 

parameter, and S1 is the neurons in hidden layer 1. 

There are two steps in the training of the RBF 

network. In the first step, depending on the 

information contained in the input samples, the 

neurons in the hidden layer S1; the center of Gaussian 

function cj and the unitary parameter   
  will be 

determined. The most frequently used methods to 

determine the Gaussian function is the K-means 

aggregation algorithm. 

In the second step, according to the parameter in 

the hidden layer, input samples and the target values, 

the weight wj will be determined and adjusted by the 

principle of least squares. 

5. Experimental set-up, data collection and 

faults description 

 

Rolling element bearings and gears are the most 

common and important components used in rotating 

machinery such as gearboxes. Faults occurring on the 

surface of these components could cause unexpected 

machine breakdown. Therefore, it is necessary to 

develop an effective intelligent gearbox fault 

diagnosis method. To verify the effectiveness of the 

proposed method, gearbox datasets provided by the 

Prognostics and Health Management Society are 

analyzed. 

5.1. Prognostics and Health Management 

Society 

Data collected in this section come from public 

datasets distributed by Prognostics and Health 

Management (PHM) Society under 2009 PHM 

challenge competition [47]. The data are 

representative of a generic industrial gearbox shown 

in figure 3. Data were sampled synchronously from 

accelerometers mounted on both the input and output 

shaft retaining plates of the gearbox. An attached 

tachometer generates 10 pulses per revolution, 

providing very accurate zero crossing information. 

Data were collected at 30, 35, 40, 45 and 50 Hz shaft 

speed under high and low loading. The test runs 

include seven different combinations of faults and one 

fault-free reference run. The signals were sampled 

with sampling frequency 66.666 kHz and the 

sampling horizon was 4s long.  

 
 

Fig3. PHM society gearbox data collection setup [47]. 
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Table 1. Comparison of parameters for wavelet selection 

Wavelet type Energy to Shannon Entropy ratio Maximum Relative Wavelet Energy 

Complex Morlet 25.516 0.054756 

Complex Gaussian 130.348 0.015358 

Shannon 98.139 0.035353 

Meyr 137.630 0.014681 

Sym2 122.561 0.015962 

rBio5.5 143.992 0.011401 

 

 
Fig4. Plot between Energy to Shannon Entropy ratio vs. Scale number for rBio5.5 wavelet (Maximum Relative Wavelet Energy criterion). 

6. Results and discussions 

In the present study, training and testing of the 

classifiers as MLP, RBF, LVQ and SOM have been 

carried out. For healthy and faulty bearings and gears, 

continuous wavelet coefficients (CWC) of vibration 

signals are calculated using six different mother 

wavelets in which there are real valued as Meyer, 

rBio5.5, Symlet2 wavelets and other three are 

complex valued as complex Gaussian, complex 

Morlet and Shannon wavelets. The total energy and 

total Shannon entropy of CWC is calculated for 

vibration signals at different rotor speed 1800, 2100, 

2400, 2700 and 3000 rpm and for different loading 

conditions using healthy and faulty gearbox. The total 

energy to total Shannon entropy ratio for each 

wavelet is calculated as shown in Table 2. The total 

energy is calculated for each scale and for vibration 

signals at different rotor speed and for different 

loading conditions using healthy and faulty 

conditions. Relative wavelet energy is calculated for 

each scale by taking the ratio of total energy of nth 

scale and sum of total energy of all scales. Maximum 

value of RWE is selected for each wavelet as shown 

in Table 1. 

The Energy to Shannon Entropy ratio (ESER) is 

obtained maximum for rBio5.5 wavelet. Hence, 

rBio5.5 wavelet is considered as the base wavelet to 

extract features for fault diagnosis. Similarly, the 

Complex Morlet wavelet is selected based on 

Maximum Relative Wavelet Energy (MRWE) 

criterion. The statistical parameters of the wavelet 

coefficients are extracted in 1–128 scale of CWT 

basic wavelet. In this study, the Morlet wavelet and 

rBio5.5 wavelet are selected based on two selection 

wavelet criteria. Seven statistical features are selected 

like standard deviation, crest factor, absolute mean 

amplitude value, variance, kurtosis, skewness and 

fourth central moment of wavelet coefficients of 

vibration signals. Some statistical features are defined 

as follows [48, 49]: 

Mean value: mean value is the average of the 

signal.  

Standard deviation (STD): Standard deviation is a 

measure of energy content in the vibration signal
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                   √
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 (   )
           (27) 

Skewness: skewness characterizes the degree of 

asymmetry of a distribution around its mean. 

Skewness can come in the form of negative or 

positive skewness 

         
 

(   )(   )
∑(

    ̅

 
)                      (28) 

Kurtosis: Kurtosis is a dimensionless, statistical 

measure that characterizes the flatness of a signal’s 

probability density function. A signal containing 

many sharp peaks will result in a high kurtosis value. 

The mathematical definition of the kurtosis value can 

be found in equation (29). The kurtosis value is used 

to identify broken or chipped gears as well as the 

bearing faults. If the signal is normally distributed the 

parameter value will be close to 3. 

         {
 (   )

(   )(   )(   )
∑(

    ̅

 
)
 

}  
 (   ) 

(   )(   )
         (29) 

For feature reduction, the optimal amounts of 

scales should be extracted. Wavelet entropy and 

energy are used to select the optimal scales of the 

basic Morlet wavelet and rBio5.5 wavelet. The proper 

scales are chosen when the Shannon entropy of the 

corresponding wavelet coefficients is minimum and 

the energy is maximum. To search for optimal scales, 

the distribution of energy to Shannon entropy with 

rBio5.5 wavelet and complex Morlet wavelet belongs 

to each scale level from scale 1 to 128 for healthy 

gears and bearings are shown in figures 4 and 5. From 

figures 4 and 5, the optimal scales with two criteria 

are between 35-62 and 52-70 respectively. 

In case A, statistical parameters in all scales (1–

128) of continuous wavelet transform are considered 

as feature sets which means that no feature reduction 

is used. Case B is related to the condition that 

statistical features in optimal scales, which has been 

extracted based on the criteria of maximum energy to 

Shannon entropy ratio, are considered. In case C, in 

addition to statistical features in optimal scales, 

energy and Shannon entropy factors are used as two 

new features as features sets. In case D, in addition 

the condition of case C, the PCA is applied to CWC 

for more reduction in feature sets. After finding the 

optimal scales based on maximum energy to Shannon 

entropy, which results in 65% and 59%  feature 

reduction with MRWE and ESER respectively. For 

better classification, the energy and Shannon entropy 

factors are used as two new features in the input of 

the classifier. There are ten neurons in the input layer 

for this case, out of which seven are statistical 

parameters, number of rotation and the other two are 

energy and Shannon entropy features. As shown in 

Table 3, the performance of the ANN classifier for 

machinery fault diagnosis is acceptable. It can be seen 

that the adoption of maximum energy to Shannon 

entropy ratio for features reduction (case B-optimal 

scales) leads the diagnosis method to higher accuracy, 

about 11–21 percentage points greater than the case 

with no feature reduction (case A). In addition, the 

training time of ANN with feature reduction is about 

2.45 times less than the corresponding time of before 

feature reduction. On the other hand, Table 3 

indicates that the usage of energy and Shannon 

entropy as two new features along with other 

statistical features in optimal scales (case C) increases 

the accuracy of the diagnosis method by 20–30 

percentage points in comparison with the no feature 

reduction case (case A). Also, this idea improves the 

performance of the classifier between 5 to 15 

percentage points in comparison with case B, in 

which the energy and Shannon entropy have not been 

considered as the input of the classifier; however, 

there is no significant difference between the training 

time of the two cases B and C. Also, using PCA in 

feature reduction (Case D), improves the performance 

of the classifier between 1 to 3 percentage points in 

comparison with case C. The results of classification 

with Maximum Energy to Shannon Entropy ratio 

criterion and using MLP, SOM, LVQ and RBF have 

been shown in Tables 3, 4, 5 and 6 respectively. From 

these Tables we found that the MLP network has the 

best accuracy in classification of gearbox faults in 

comparison of SOM, LVQ and RBF. Table 3 shows 

the classification rates for each of the implemented 

datasets. As expected, the use of the PCA leads to 

perfect classification. According to Tables 3, 4, 5 and 

6, it is clearly seen that the PCA projects the 

conditions samples into new spaces leads to the 

highest accuracy. Tables 7, 8, 9 and 10 show the 

recognition rates for the combination faults of gears 

and bearings of gearbox with Maximum Relative 

Wavelet Energy criterion. The results show the 

validity of the proposed method. The overall 

performance for MLP (case D) and with MESE and 

MRWE criteria is 98.70% and 96.378%, respectively. 

From Tables 3 and 7, it is noticeable to be mentioned 

that the time needed to implement the MLP classifier 

with MRWE is bigger than the training time needed 

for the MESE criteria. As can be seen in Tables 3 and 

7, the best result of classification can be obtained is 

100% and the number of hidden neurons is 30. Tables 

6 and 10 show the performance of the RBF network 

with two wavelet criteria and four datasets. It shows 

that the RBF network employing the K-means 

aggregation algorithm used 50.97 s and 315 steps in 

training, whilst the MLP network used only 46.74 s 

and 253 steps in training. Hence, the performance of 

the MLP network is better than the RBF network, 

particularly in the computational resource for training. 
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As it can be seen in Tables 5 and 9, the maximum 

probability of correct classification for the healthy 

and faulty gearbox condition is about 98%. These 

Tables demonstrate the results by applying LVQ1 and 

LVQ2 algorithm. After applying LVQ2 algorithm, the 

results show that there is an improvement between 

1% to 3% in the classification percentage as shown in 

Tables 5 and 9. In these Tables, Tr. A., Te. A., and T. 

T. Is training accuracy, testing accuracy and training 

time respectively. In all cases the training time of 

LVQ1 is bigger than LVQ2. The accuracy of the 

LVQ classifier in fault diagnosis of gearbox is after of 

the MLP and RBF. From Table 5, PCA overall 

performance is about 90.97% and 93.13% for the 

LVQ1 and LVQ2 classifiers respectively. Similarly 

from Table 9, when we apply the Maximum Relative 

Wavelet Energy criterion to LVQ1 algorithm and 

LVQ2 algorithm, the overall performance 

classification (case D) is 89.02% and 91.33%, 

respectively. 

 

 
Fig5. Plot between Energy to Shannon Entropy ratio vs. Scale number for Complex Morlet wavelet 

(Maximum Energy to Shannon Entropy ratio criterion). 
 

Table 2. Four different cases as input for ANN 

Case name Feature sets 

A Statistical parameters in all scales 

B Statistical parameters in optimal scales 

C Statistical parameters and energy and Shannon entropy in optimal scales 

D Statistical parameters and energy and Shannon entropy in optimal scales with PCA 

 

Table 3. Classification rate for gearbox with MLP (Maximum Energy to Shannon Entropy ratio criterion) 

Classifier (inputs) Gear faults Bearing faults 

Healthy Chipped Broken Eccentric Healthy Inner Ball Outer Combine 

Case A 

Tr. A. (%) 80.64 70.50 78.89 76.64 82.96 81.70 83.52 80.19 84.66 

Te. A. (%) 79.64 70.02 77.42 74.58 80.29 80.91 81.66 79.08 82.81 

T. T. (s) 100.66 

Case B 

Tr. A. (%) 93.13 84.68 89.93 88.63 92.50 91.50 93.79 92.21 94.39 

Te. A. (%) 91.61 83.77 87.50 86.31 90.42 89.48 91.70 90.17 92.90 

T. T.(s) 40.94 

Case C 

Tr. A. (%) 97.78 97.80 98.47 93.59 97.58 96.07 98.01 97.53 98.89 

Te. A. (%) 95.89 96.01 96.73 91.97 95.64 94.39 96.85 95.14 96.22 

T. T.(s) 50.19 

Case D 

Tr. A. (%) 99.24 99.12 98.89 95.96 98.49 98.63 99.61 98.40 100 

Te. A. (%) 97.10 97.84 96.46 93.60 96.39 96.18 98.49 96.10 98.89 

T. T.(s) 46.74 
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Table 4. Classification rate for gearbox with SOM (Maximum Energy to Shannon Entropy ratio criterion) 

Classifier (inputs) Gear faults Bearing faults 

Healthy Chipped Broken Eccentric Healthy Inner Ball Outer Combine 

Case A 

Tr. A. (%) 74.20 69.39 74.18 71.85 75.62 76.53 77.38 78.41 78.36 

Te. A. (%) 72.28 68.06 72.62 70.23 73.19 74.21 75.91 76.31 76.10 

T. T. (s) 116.67 

Case B 

Tr. A. (%) 86.39 77.79 83.80 82.49 86.48 85.51 87.55 88.42 88.59 

Te. A. (%) 84.29 75.36 81.94 80.44 84.35 83.58 86.47 86.22 86.37 

T. T. (s) 60.18 

Case C 

Tr. A. (%) 91.67 90.43 92.55 86.74 90.49 89.06 92.38 91.54 92.19 

Te. A. (%) 89.05 88.66 90.29 84.98 88.85 87.18 90.64 89.28 90.59 

T. T. (s) 65.73 

Case D 

Tr. A. (%) 93.18 93.28 92.70 88.61 92.38 93.29 94.19 94.20 95.27 

Te. A. (%) 91.29 91.64 90.49 86.55 90.59 91.08 93.32 92.79 93.46 

T. T. (s) 62.80 

 
Table 5. Classification rate for gearbox with LVQ (Maximum Energy to Shannon Entropy ratio criterion) 

Classifier (inputs) Gear faults Bearing faults 

Healthy Chipped Broken Eccentric Healthy Inner Ball Outer Combine 

Case 
A 

Tr. A. (%) 
LVQ1 74.20 66.37 73.29 70.10 74.17 76.35 77.92 78.03 78.18 

LVQ2 76.18 70.90 75.36 73.76 77.97 78.09 79.54 80.51 80.20 

Te. A. (%) 
LVQ1 72.52 66.05 71.75 70.05 72.64 74.36 75.06 75.48 76.33 

LVQ2 74.20 68.38 74.11 72.51 75.25 76.27 77.21 78.16 78.03 

T. T. (s) 
LVQ1 131.83 

LVQ2 125.91 

Case 
B 

Tr. A. (%) 
LVQ1 86.49 77.22 83.90 82.35 86.12 85.04 87.25 88.18 88.59 

LVQ2 88.46 80.39 85.29 84.73 88.59 87.30 89.11 90.37 90.64 

Te. A. (%) 
LVQ1 83.92 76.16 81.05 80.27 84.71 83.19 85.59 86.05 87.41 

LVQ2 86.17 78.52 83.72 82.39 86.24 85.36 87.44 88.10 89.05 

T. T. (s) 
LVQ1 66.48 

LVQ2 60.18 

Case 
C 

Tr. A. (%) 
LVQ1          

LVQ2 93.42 92.19 94.38 88.37 92.61 91.49 94.27 93.71 94.30 

Te. A. (%) 
LVQ1 89.04 88.47 90.10 84.82 88.32 88.63 90.59 88.60 90.84 

LVQ2 91.28 90.18 92.57 86.48 90.19 90.81 92.55 91.20 92.10 

T. T. (s) 
LVQ1 75.19 

LVQ2 70.59 

Case 
D 

Tr. A. (%) 
LVQ1          

LVQ2 95.31 95.39 95.38 90.51 94.62 95.21 96.94 96.33 97.62 

Te. A. (%) 
LVQ1 91.95 90.49 91.46 86.75 90.42 91.08 92.73 91.52 92.36 

LVQ2 93.11 93.50 93.71 88.12 92.47 93.62 94.10 94.23 95.33 

T. T. (s) 
LVQ1 70.27 

LVQ2 64.39 

 
Table 6. Classification rate for gearbox with RBF (Maximum Energy to Shannon Entropy ratio criterion) 

Classifier (inputs) Gear faults Bearing faults 

Healthy Chipped Broken Eccentric Healthy Inner Ball Outer Combine 

Case A 

Tr. A. (%) 78.90 72.76 77.51 75.24 80.72 80.41 81.52 82.39 82.44 

Te. A. (%) 76.52 71.70 75.79 73.94 78.06 77.98 79.74 80.05 80.88 

T. T. (s) 104.63 

Case B 

Tr. A. (%) 90.90 82.81 87.16 86.71 90.10 89.98 91.53 92.08 92.98 

Te. A. (%) 88.06 80.42 85.25 84.90 88.59 88.36 89.54 90.73 90.41 

T. T. (s) 48.36 

Case C 

Tr. A. (%) 95.27 94.14 96.19 90.82 94.68 93.09 95.59 95.90 96.97 

Te. A. (%) 93.19 92.11 94.45 89.27 92.08 91.10 93.39 92.90 94.81 

T. T. (s) 57.49 

Case D 

Tr. A. (%) 97.66 97.83 97.17 92.47 96.19 96.84 98.57 98.84 99.06 

Te. A. (%) 95.23 94.59 95.55 90.73 94.90 94.18 96.43 95.94 97.92 

T. T. (s) 50.97 
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Table 7.Classification rate for gearbox with MLP (Maximum Relative Wavelet Energy criterion) 

Classifier (inputs) Gear faults Bearing faults 

Healthy Chipped Broken Eccentric Healthy Inner Ball Outer Combine 

Case A 

Tr. A. (%) 79.28 68.71 77.36 75.20 80.17 79.81 81.63 78.48 82.18 

Te. A. (%) 77.19 69.92 75.27 75.01 78.55 78.71 79.46 76.39 80.12 

T. T. (s) 110.37 

Case B 

Tr. A. (%) 91.72 82.16 87.03 86.24 90.19 89.33 91.13 90.22 92.44 

Te. A. (%) 89.27 81.63 86.95 84.77 88.19 87.79 89.15 89.31 90.29 

T. T. (s) 49.09 

Case C 

Tr. A. (%) 95.37 95.89 96.90 91.72 95.27 94.36 96.93 95.27 96.68 

Te. A. (%) 93.15 94.06 94.66 90.11 93.81 92.60 94.53 93.25 94.76 

T. T. (s) 59.81 

Case D 

Tr. A. (%) 97.49 96.33 96.62 93.15 96.44 96.18 97.19 96.38 97.61 

Te. A. (%) 95.54 94.39 94.16 91.33 93.90 94.78 96.08 94.29 96.74 

T. T. (s) 53.76 

 
Table 8. Classification rate for gearbox with SOM (Maximum Relative Wavelet Energy criterion) 

Classifier (inputs) Gear faults Bearing faults 

Healthy Chipped Broken Eccentric Healthy Inner Ball Outer Combine 

Case A 

Tr. A. (%) 72.17 68.39 72.79 99.18 73.25 74.12 75.27 76.33 76.94 

Te. A. (%) 70.19 66.09 70.12 68.27 71.95 72.91 73.62 74.22 74.16 

T. T. (s) 122.72 

Case B 

Tr. A. (%) 84.36 75.27 81.33 80.28 84.44 83.11 85.67 86.70 86.19 

Te. A. (%) 82.87 73.39 79.90 78.51 82.34 81.11 85.06 83.26 83.56 

T. T. (s) 68.59 

Case C 

Tr. A. (%) 89.29 88.05 90.11 84.36 88.92 87.41 90.03 89.77 90.71 

Te. A. (%) 87.27 86.18 88.95 82.15 86.69 85.60 88.19 87.79 88.73 

T. T. (s) 73.48 

Case D 

Tr. A. (%) 90.18 91.82 90.22 86.38 90.98 91.19 92.28 92.81 93.71 

Te. A. (%) 89.62 89.71 88.73 85.17 88.55 89.67 91.38 90.18 91.81 

T. T. (s) 70.79 

 
Table 9. Classification rate for gearbox with LVQ (Maximum Relative Wavelet Energy criterion) 

Classifier (inputs) Gear faults Bearing faults 

Healthy Chipped Broken Eccentric Healthy Inner Ball Outer Combine 

Case 

A 

Tr. A. (%) 
LVQ1 70.39 67.08 70.11 69.44 72.46 73.09 74.18 76.28 77.94 

LVQ2 74.75 68.41 73.35 71.90 75.29 76.47 77.19 78.39 78.59 

Te. A. (%) 
LVQ1 70.03 65.21 70.17 66.62 70.51 73.81 73.19 74.51 74.39 

LVQ2 72.24 67.18 72.93 70.76 73.25 74.30 75.37 76.79 76.66 

T.T. (s) 
LVQ1 145.84 

LVQ2 136.51 

Case 

B 

Tr. A. (%) 
LVQ1 80.10 73.49 77.03 78.41 82.18 80.57 83.55 84.26 83.44 

LVQ2 82.14 75.77 81.83 80.56 84.20 83.29 85.42 86.71 86.58 

Te. A. (%) 
LVQ1 86.33 86.97 87.73 83.53 86.16 86.04 88.19 87.72 88.42 

LVQ2 89.46 88.31 90.02 84.81 88.73 88.49 90.62 89.06 90.41 

T.T. (s) 
LVQ1 75.96 

LVQ2 69.49 

Case 

C 

Tr. A. (%) 
LVQ1 88.05 88.24 90.31 84.74 88.06 86.06 90.62 89.07 90.32 

LVQ2 91.54 90.09 92.37 86.27 90.33 89.79 92.14 91.73 92.44 

Te. A. (%) 
LVQ1 86.29 87.11 87.78 82.03 86.42 86.27 88.10 87.34 88.52 

LVQ2 89.46 88.31 90.02 84.81 88.73 88.49 90.62 89.06 90.41 

T.T. (s) 
LVQ1 85.52 

LVQ2 78.19 

Case 
D 

Tr. A. (%) 
LVQ1 89.29 90.04 90.61 86.11 90.19 91.27 92.03 92.15 93.28 

LVQ2 92.41 93.63 94.10 88.32 92.54 93.75 94.16 94.80 95.57 

Te. A. (%) 
LVQ1 89.07 89.64 89.16 84.15 88.25 89.46 90.19 90.05 91.25 

LVQ2 91.53 91.66 91.74 86.78 90.09 91.52 92.44 92.64 93.65 

T.T. (s) 
LVQ1 78.52 

LVQ2 72.95 
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Table 10. Classification rate for gearbox with RBF (Maximum Relative Wavelet Energy criterion) 

Classifier (inputs) Gear faults Bearing faults 

Healthy Chipped Broken Eccentric Healthy Inner Ball Outer Combine 

Case A 

Tr. A. (%) 76.10 70.39 75.50 73.82 78.20 77.52 79.33 80.81 80.29 

Te. A. (%) 74.16 70.22 73.61 71.15 76.62 75.54 77.70 78.43 78.26 

T. T. (s) 115.22 

Case B 

Tr. A. (%) 88.62 80.21 85.61 84.39 88.52 87.71 89.24 90.39 90.18 

Te. A. (%) 86.52 78.91 83.29 82.71 86.53 86.16 87.51 88.60 88.33 

T. T. (s) 50.63 

Case C 

Tr. A. (%) 93.25 92.80 94.29 88.44 92.18 91.24 93.25 93.66 94.03 

Te. A. (%) 91.11 90.62 92.28 87.61 90.12 89.94 91.53 90.28 92.24 

T. T. (s) 61.74 

Case D 

Tr. A. (%) 93.25 93.77 92.73 88.19 92.46 92.56 94.18 96.60 97.32 

Te. A. (%) 93.33 92.44 93.15 88.36 92.14 92.73 94.16 93.15 95.38 

T. T. (s) 54.59 

 

 

7. Conclusion 

This study presents, a methodology for detection 

of gearbox faults by classifying them using four 

artificial intelligence techniques, like MLP, RBF, 

SOM and LVQ. First, CWT applied over the signal, 

employing the six mothers wavelet. Two wavelet 

selection criteria Maximum Energy to Shannon 

Entropy ratio and Maximum Relative Wavelet Energy 

are used and compared to select an appropriate 

wavelet for feature extraction. Results obtained from 

the two criteria show that the wavelet selected using 

Maximum Energy to Shannon Entropy ratio criterion 

gives better classification efficiency. Though all four 

techniques performed well, but the results of faults 

classification with MLP are better than another. To 

cover all the physical and meaningful frequencies of 

the vibration signal of the gearbox, CWC must be 

calculated in several scales which cause the curse of 

dimensionality. To solve this problem, the PCA 

dimension reduction method was used. To find very 

efficient features for classification, maximum energy 

to Shannon entropy ratio was employed to search for 

the optimal scales of CWT and consequently the 

features were reduced. This feature reduction method 

improved the performance of the classifiers in fault 

detection of the gearbox between11 to 21 percentage 

points in comparison with the case of no feature 

reduction. Moreover, the training time of classifiers 

with optimal scales reduced 2.45 times. LVQ being 

the supervised version of SOM the classification 

accuracy obtained 87.20% (LVQ2), which is better 

than SOM (85.227%). As a new idea, energy and 

Shannon entropy have been applied as two new 

features along with statistical parameters as input of 

the classifier. The obtained results indicate that the 

accuracy of the classifier has been increased between 

5 to15 percentage points by considering these two 

features. Also, using PCA in feature reduction, 

improves the performance of the classifier between 1 

to 3 percentage points in comparison with the case of 

no PCA.  
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