دوره 2، شماره 4 - ( 7-1391 )                   جلد 2 شماره 4 صفحات 215-206 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shojaeefard H, Etghani M, Tahani, Akbari. Artificial Neural Network Based Multi-Objective Evolutionary Optimization of a Heavy-Duty Diesel Engine. ASE 2012; 2 (4) :206-215
URL: http://www.iust.ac.ir/ijae/article-1-155-fa.html
Artificial Neural Network Based Multi-Objective Evolutionary Optimization of a Heavy-Duty Diesel Engine. Automotive Science and Engineering. 1391; 2 (4) :206-215

URL: http://www.iust.ac.ir/ijae/article-1-155-fa.html


چکیده:   (34413 مشاهده)

In this study the performance and emissions characteristics of a heavy-duty, direct injection, Compression ignition (CI) engine which is specialized in agriculture, have been investigated experimentally. For this aim, the influence of injection timing, load, engine speed on power, brake specific fuel consumption (BSFC), peak pressure (PP), nitrogen oxides (NOx), carbon dioxide (CO2), Carbon monoxide (CO), hydrocarbon (HC) and Soot emissions has been considered. The tests were performed at various injection timings, loads and speeds. It is used artificial neural network (ANN) for predicting and modeling the engine performance and emission. Multi-objective optimization with respect to engine emissions level and engine power was used in order to deter mine the optimum load, speed and injection timing. For this goal, a fast and elitist non-dominated sorting genetic algorithm II (NSGA II) was applied to obtain maximum engine power with minimum total exhaust emissions as a two objective functions.

متن کامل [PDF 3560 kb]   (7700 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: موتور احتراق داخلی

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله بین‌المللی مهندسی خودرو می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Automotive Science and Engineering

Designed & Developed by : Yektaweb