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of the liquid; that is, the pressure is the weight of a column of height £ and unit

area. Therefore,
2pgl
Fou = ¢ fﬂ
p

= cu't (2.29)

where ¢ is a constant encompassing all constants in the equations.
From Equations 2.28 and 2.29, the state equation is

: c F

= ——uvl+ —. 2.30
x + ) (2.30)

Specific values are A = 1 m?, ¢ = 2.0 m¥?/s. With these,
¢ = —2.0uN€ + Fi. 2.31)
The simulation conditions are as follows: £(0) = 1 m, u(t) = .0l m, F,(1) =0,0 <
t < 100 s. These conditions correspond to the tank being emptied at constant valve
opening. Figure 2.12 shows the behavior of the level (MATLAB command ode23).

Note that the behavior is not exponential: the asymptotic value ¢ = 0 is reached in
finite time.

0.9 \
0.8 \ 1
0.7 t

0.6 AN L]

g L
= 0.5 3
-
8 0.4 \
! '\
0.3 S

0.2 \

0 10 20 30 40 50 60 70 80 90 100
Time(s)

Figure 2.12 Response of level with zero in flow
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2.4 MODELING WITH LAGRANGE’S EQUATIONS

Lagrange’s equations constitute a well-known and useful technique for the analysis
of mechanical systems [4.5]. To use Lagrange’s equations, we define a set of gen-
eralized coordinates, that is, a set of positions and angles that completely describe
the motion of the system. These coordinates must be independent; that is, motion
obtained by arbitrary specification of coordinate time history must be mechanically
possible.

The kinetic energy of the system is a function of the generalized coordinates g,
and their derivatives, and is written as 7(q. ¢). The potential energy is a function
of the ¢; and is written as V(q).

The Lagrangian L is defined as

L=T-V. (2.32)

To write Lagrange’s equations, we need to define the generalized forces, F;. We do
this by computing the work done by all nonconservative forces when g; is changed
to g; + dg; with all other coordinates held fixed. For infinitesimal dg;, the work is
proportional to dg;, and the proportionality factor is F;.

Lagrange’s equations are as follows:

d [aL alL
= (— - —=1F, Pl Do n. (2.33)
dt \ dq; aq;

LJ Example 2.5

Solution

(Pendulum on a Cart)

Description: An inverted pendulum of mass m and length ¢ moves in the vertical
plane, about a horizontal axis fixed on a cart. The cart, of mass M, moves hori-
zontally in one dimension, under the influence of a force F. (See Fig. 2.13). The
pendulum rod is assumed to have zero mass. There is no friction in the system.
The force F is to be manipulated to keep the pendulum vertical.

Inputs and Outputs: The input is the force F, and the outputs are the angle # and
the distance x.

Objective: Write the equations, and simulate under given conditions.

The generalized coordinates are x and 6. The velocity of m has two components,
one due to the motion of the cart and the other due to the angular motion of the
pendulum. The velocity of the cart is x in the horizontal direction.

The horizontal position of the mass m is x + £sinf, and its vertical position is
tcos . Therefore, the total kinetic energy is

a2

T—IM'3+| i(-+tz-‘ 9)2+ i(e 0‘;0]-
= 2 X 2m df X sin d.' COs

1 1 : 2 : .
= EM.EE + Eml(i + ¢H cosB)” + (—£6 sin9)3|.
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Figure 2.13 Pendulum on a cart
The potential energy of m varies with height. If V; is the potential energy of m for
6 = 90°, then

V = Vy+ mglcosf.

Thus,
] ] l v ] 2 A E 2
L = EM(.Y)' + ;m[{x + ¢0 cosB)” + (£0sinf)°] — Vy — mgl cos b,

The only nonconservative force is F. If x is held fixed and @ is changed to
# + df, F does no work: the generalized force associated with 6 is zero. If 8 is
held fixed and x changes to x + dx, the work done is Fdx; therefore, F is the
generalized force associated with x.

We may now write Lagrange’s equations:

oL . . :

— = MXx + m(x + £6 cost)
dax

aL

27 =1

0x

d (dL . - 2 .
—| — | = MX +mi + mlfcos@ —ml(f) sinf.
dr \ 9x

The equation related to x is

(M + m)¥ + mtf cos6 —mé(#)*sind = F. (2.34)
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For the € equations,

oL . .
% = m(x + €0 cos A)L cos B + me*8 sin® #
= méx cosf +me0
L ; ; ;
29 = —m(x + €6 cos0)£0 sin 6 + me>(6)* sin cosH + mgl sinf

= —mtisinf + mglsinf

d (oL oo "
— | — | = méxcostl —mlBxsinf +miH.
dr \ 96

The equation pertaining to @ is
meicos® — meOxsin +me*6 + meoxsing —mglsinf =0
or
¥cos@ + €6 — gsin® = 0. (2.35)

Equations 2.34 and 2.35 are not state equations.
Define v = x and @ = 6, and write Equations 2.34 and 2.35 as

M+m mecosO |[ 0] _ [ F+mbw?sing
cos 6 ¢ w | gsinf '

Solving for v and @ yields

i o F +méw’ sinf — mg sinf cos 6 @36
N M + m(1 — cos2 ) =

. —Fcosf —mbw’sinfcosd + (M +m)gsiné
W = : . 2.37)
M+ m(] —cos*0)]

Append the definitions
X=uv (2.38)
i = w. (2.39)

Equations 2.36 to 2.39 are the four state equations. Specific values are £ = | m
and M = m = | kg. The state equations are

X =
0 =w
i F + w’sinf — 9.8sinf cos @
2 —cos? 6
. —Fcosf — w*sinfcosf + 19.6sin6
w = ; (2.40)

2 —cost@
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The simulation conditions are as follows: x(0) = v(0) = w(0) = 0, 6(0) = 0.1
rad, F(t) = 0,0 <t < 1 s. Figure 2.14 shows the results (MATLAB command
ode23). This system is seen to be unstable. The pendulum falls to the right (6 > 0)
while the cart goes to the left.
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Figure 2.14 Pendulum angle and cart distance from a nonzero initial state

2.5 LINEARIZATION

The task of a control system is often to maintain given constant operating condi-
tions—for example, constant speed, level, position, or basis weight. To achieve this
objective, we use a two-step procedure:

1. Select a de steady state that corresponds to desired constant values of u and/or y.
2. Design a control strategy to generate increments in the control in response to
deviations from the dc steady state.

To do this, we need to study (i) the dc steady state of a system and (ii) the model
that relates the deviations from steady state, i.e., the small-signal, or incremental,

model.
We begin with

x = f(x, u) (2.41)
vy = h(x, u). (2.42)
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Note that the functions f and h are not explicitly functions of ¢, so the system is
time-invariant.

For constant u = u*, x* is an equilibrium state if f(x*, u*) = 0. We shall use
the symbol 0 to denote a vector whose elements are all 0. If x = x* and u = u",
then x = 0 and the state remains at x*; i.e., X* is an equilibrium point with u = u".

The output corresponding to an equilibrium state x* is y* = h(x*, u*). Therefore,
the dc steady-state quantities satisfy

Ix'. 0" =0
h(x*.u*) = y". (2.43)

A dc steady state is defined by choosing some of the variables in Equation (2.43)
and solving for the others. There is no guarantee that a solution will exist, or that
it will be unique. With n states, r inputs, and m outputs, Equation 2.43 represents
n + m nonlinear equations with n + m -+ r variables. In most cases, it will not be
possible to predetermine more than r of those variables. For example, it will not
usually be possible to set 2 outputs (m = 2) at arbitrary values if the system has
only one input (r = 1).

The next step is to write equations for incremental variables, i.e., for deviations
from equilibrium. Let

x(1) = x* + Ax(1), u(r) =u” + Au(z), y() =y + Ay(r).

Because x* = 0, substitution in Equations 2.41 and 2.42 yields

Ax = f(x* + Ax,u” + Au) (2.44)
Ay = h(x" + Ax,u" + Au) — y". (2.45)

Expanding the components of f in a Taylor series, we obtain

dfi af;
fi(x* + Ax, u‘*+Au)=_f}(x".u*)-i-,i Ax) + /i Axy+ -
r)_‘l'l * 3.‘(3 %
af; af; afi
-1—i Ax, + ﬁ Auy+---+ _f_ A,
Xy * duy . au,- &
+ higher-order terms in Ax. Au. (2.46)

Here, the notation * ‘ " means “evaluated at x*, u*.” At this point, it is assumed

that the Ax’s and Au’s are sufficiently small to justify neglecting the higher-order



26  Chapier 2 Simulation and Modeling

terms. If the control system to be designed works at all well, that assumption should
be satisfied.

Without the higher-order terms, and with f(x*,u*) = 0, the RHS of Equa-
tion 2.46 is the ith member of a set of n equations, written in matrix form as

of of
f(x* + Ax, u" + Au) = — AX + — Au (2.47)
ax |, ou |,
where
[of i 9h T
dx; dxa T dx,
af af2 afs
of a-"] 3.\‘2 o axﬂ
S
oy o
Lax, 77 ax,

of
is the Jacobian of f with respect to x, with a similar definition for g the Jacobian
u

with respect to u. Thus, Equation 2.44 becomes approximately

of
AXx + e Au. (2.48)

X of
Ax = =—
ax u

* *

As for Equation 2.45, since y* = h(x*, u*), we have

Au (2.49)

A dh
e 0x

Ax 4+ L
du

* *

for small Ax, Au.

Note that the Jacobians in Equations 2.48 and 2.49 are constant matrices, because
they are evaluated at specific values x* and u*. Note also that the right-hand sides
of those equations are linear functions of Ax and Au, so the incremental system is
linear and time-invariant.

Itis also possible to linearize about a trajectory—a nominal set of time functions,
x*(¢) and u*(7), that satisfy the state equations. An example would be a robotic
manipulator following a preset path. In such a case, the linearized system is time-
varying (see Problem 2.21).
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If some of the inputs are disturbances, it is often desirable to separate them from
the control inputs. The linearized equations become

. of of of
AX = — Ax + — Au+ — Aw (2.50)
ax |, du |, ow |,
dh dh oh
Ay = — AX+ — Au+ — AW (2.51)
ox |, Ju |, aw |,

where w is the vector of disturbance inputs.
If the original system is linear and time-invariant, it is represented by equations
of the form

X = AX+ Bu+ Fw
Cx + Du+ Gw. (2.52)

-
I

The equilibrium point satisfies

0 = Ax" + Bu® + Fw*
¥y = Cx"+ Du” + Gw". (2.53)

If u* and w* are given, a unique solution x* (hence y*) always exists if A is
nonsingular. If A is singular, there are multiple solutions if the vector Bu* + Fw*
is in the range space of A, i.e., can be constructed by a linear combination of the
columns of A: if that is not the case, there is no solution.

If y* and w" are given and we wish to solve for x* and u”, it is useful to write

Equation 2.53 as
A B|[x* 0 Fl s
[C D][“*]—{y*]_[("]w' 239

If m = r (equal number of inputs and outputs), then the matrix on the left-
hand side (LHS) of Equation 2.54 is square, and a unique solution exists if that
matrix is nonsingular. If » > m (more inputs than outputs), and if the matrix has
maximal rank n + m, there exist multiple solutions to Equation 2.54. Finally, if
r < m (fewer inputs than outputs) and the matrix has maximal rank n + r. there
is a (unique) solution only in the special case where y* and w* are such that the
RHS of Equation 2.54 in the range space of the matrix [ 2 £ ].

As for the incremental system, with

x =x" + Ax, u=u"+ Au, y=y"+ Ay, w=w+ Aw
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Equations 2.52 become
AX = AX" + Bu* + FW* + A Ax + B Au+ FAw
Y +Ay =Cx"+Du* +Gw' +C Ax+ D Au+ G Aw
which, in view of Equation 2.53, yields
Ax = AAX + BAu + FAw
Ay = CAx+ DAu+ GAw. (2.55)
Equation 2.55 expresses the fact that a linear system is its own incremental system,

and therefore no extra work is needed to obtain the incremental system in that
case.

l.:l Example 2.6  (dc Servo)

For the servomechanism of Example 2.1, calculate the constant equilibrium point
for Ty =0 and 6* = 6,. Give the incremental model.

Solution  From Equation 2.17 and the first of the two output equations in Equation 2.18,

application of Equation 2.53 yields

0 1 0
0 0 0 NKy 6* 0
0 — T o' | + {l) T
0 — i —
0 NK, _E f 3
L L
o*
G=00 0 0]| &

f.*

It follows easily that w* = i* = v* = 0.
The incremental variables are

AO =0—0,, Aw=w—ow" = w, Ai=i—-i*=1, Av=v—v* =7,

Following Equation 2.55, the incremental model is

~ a 1 0
Y o o NK.|[a6 0
7 ] = g w =) ? v
f'_, —NKm —R i =
0 — L
L L L
Al 1 0 0 Ad
w |70 1 0|

i



