Example 2.1  (dc Servo)

Description: A dc motor with constant field is driven by application of a voltage to
its armature terminals, Through a set of gears, the motor drives a load with moment
of inertia J, subject to an external torque (see Fig. 2.2). The control objective is to
keep the load angle at some desired value.

Inputs and Outputs: The armature voltage v is the control input, and the load
torque T is a disturbance. The outputs are the shaft angle # and angular velocity .
Basic Principles: The gear ratio N is the ratio of angles and velocities of the
two shafts: the torques have the same ratio. The load shaft is the high-torque, low-
velocity shaft. The torque 7,, produced by a d¢ motor is given by T,, = k¢i, where
ky 1s a constant and ¢ is the field intensity, The armature circuit has resistance R
and inductance L, and the motion generates a back emf kygw,,. It can be shown
that ki = k- in Systéme International (SI) units. The rotor of the de motor has
inertia J,,.
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Figure 2.2 A dc servomechanism

Objectives: Write a model for the system, and simulate for the conditions given.

Solution  Applying Newton's second law to the rotor,
J'md?m =T, - T-:‘

where 7. is the torque exerted on the motor shafi by the load. transmitted through
the gears. Thus,

Tr == T.:ar - de‘m



so the torque at the motor shaft is seen to be the torque generated by the motor,
minus the torque required to accelerate the rotor.

The torque exerted by the motor on the load shaft, transmitted through the gears,
is NT,. Newton's second law applied to the load is

Jdim N — T
= NI;" - Tj_ — NJ;,.C&JHP

Since w,, = Nw, this becomes
(J + N*Jp)i» = NT,, — T}
or
Jowy=NT,, — T, (2.13)

where J, = J+N2J, is the effective inertia seen at the load shaft. With ¢ constant,
let k1¢p = ka¢p = K,,. Then

Tm = Kni



s0 that

NK'H! ) TJ.
W = P——. (2.14)
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To apply Equation 2.14, we need the current, #. By Kirchholf's voltage law,
di
L— + Ri =v — K,y
dr
where Kp e is the back emf, This becomes
R v N Ky,
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where the fact that «,, = Nw has been used. Because the angle @ is of interest, the
definition equation

b=w (2.16)

is added. Equations 2.14, 2.15, and 2.16 are the desired equations. In matrix form,
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Since # and @ have been specified as the outputs, the output equation is



Since # and @ have been specified as the outputs, the output equation is

7
201 2 2]
!

For the specific values K, = .05 Nw/A,. R = 1.2 Q, L = 05H. J, = 8 x
107 kg m*, J = 0.020 kg m°, and N = 12, the state equations are

P 2] 0 | 0 2] 0 () '
Clal=lo o 4@8||w|+| 6 =736 [;] (2.19)
df | 0 =12 —24 || 0 0 L

The simulation conditions are as follows: with zero initial conditions and T; =
O,v(t) =3Vfor0 <t <2and -3V for 2 <t = 4 The result (MATLAB
command Isim) is shown in Figure 2.3.
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Figure 2.3 Time responses for the dc servo



Problem
Servo with flexible shaft The low-velocity side of the gear box in Exam-
ple 2.1 drives an inertial load through a shaft sufficiently long to exhibit

torsional flexibility. The model of Figure 2.19 illustrates the situation: the
spring is lincar and develops a torque K (8, — f).

a. Model this system. Suggested steps:
i. With wy = 65, J&, = torque from spring.

ii. Jy@y = Tp, — 5 (torque exerted by spring).

iii. Write di /dt as in Example 2.1, and use the fact that w,, = N§,.

iv. Because ) — 6, is small, the equations for @ and e» call for dif-
ferences of almost equal terms. It is numerically preferable to work
with A = 6 — 5. Define A = Q. and write an equation for € in
terms of A and {. Write the state equations, using the state variables
th. A, @r, £2, and i, with v as the input.

b. Write the state equations for the specific values of Example 2.1, with
K = 500 Nm/rad.

¢. Simulate under the conditions given in Example 2.1.
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Serve with flexible shaft The dc servo of Problem 2.5 (Chapter 2) (or.
equivalently, of Problem 3.14 in Chapter 3) has two pairs of complex, un-
derdamped poles. One way of controlling such poles i1s by placing LHP
complex zeros relatively near; since closed-loop poles mugrate to zeros as
the gain is increased, zeros “attract” the underdamped poles away from the
J-axis.

Consider the compensator
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a. Obtain the Root Locus,

b. Calculate the range of & for stability.
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¢. Calculate (roughly) the value of k for which the lowest of the damping
factors associated with any pair of complex poles is maximized; i.e..
maximize the smallest damping factor.

d. For k as in part (¢), compute the closed-loop step response.

Servo with flexible shaft The transfer function 6 /v of the servo with flex-
ible shaft was computed in Problem 3.14 (Chapter 3). From the Bode plot,
calculate the range of values, if any, of the gain k of a pure-gain controller
for which the closed-loop system is stable.



