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Abstract—This paper presents a new EEG-based Brain-
Computer Interface (BCI) for on-line controlling the hand 
movement in a virtual reality environment. The goal of this 
research is to develop an interaction technique that will allow 
the BCI to be effective in real-world scenarios for hand grasp 
control. For this purpose, two classifiers are designed. The first 
classifier which is based on the imagination of right-hand 
movement  is for controlling the hand grasping, holding and 
opening. The second classifier, which is based on the 
imagination of left-hand movement is designed for error 
correction and activating the first classifier. One important 
issue in developing an on-line BCI is the robust and accurate 
classification of EEG signal which is characterized with a time-
varying distribution. In this work, we present a real-time 
recurrent probabilistic neural network for classifying the EEG 
signals. The results show that the subjects were able to achieve 
an accuracy more than 80% during the first session of 
experiment without off-line training and 73%-91% during the 
last session using single-trial classification with no adaptation. 

Keywords-on-line training; brain-computer interface (BCI); 
electroencephalogram (EEG); subject training; probabilistic 
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I.  INTRODUCTION 
 Although significant progress has been made in the 

area of brain–computer interface in recent years [1]-[2], 
there are still several issues that need to be addressed before 
BCIs can be used for real-world tasks. The BCI systems 
translate the brain activity into signals that control the 
external devices. Thus, event detection and classification of 
brain signals is an important issue in developing an EEG-
based BCI. In this context, effective attempts have been 
done to improve the classification accuracy and capacity of 
the BCI systems [3]. However, robust and accurate EEG 
discrimination still remains a challenge in developing an on-
line EEG-based BCI. The significant considerations in 
classifier design are computational complexity, 
generalization performance, fast convergence, and 
robustness to time varying environment.  

 EEG signal is a very complex and  non-stationary 
signal which is characterized by significant day-to-day and 
subject-to-subject variations and time-varying probability 

distributions. The measured values of EEG signal can be 
considered realizations of a random variable with a certain 
distribution. In this case, the pattern classification problem 
usually reduces to the construction of  a model that estimates 
the class conditional densities )( kxp  of the data and the 
respective prior probabilities )(kp  for each class k . Then, 
using Bayes’ theorem, the posterior probabilities )( kxp  can 
be computed 

∑
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In order to classify an unknown pattern ,x  we select the 
class with the highest posterior probability )( kxp  as 
suggested by the Bayes’ rule. The accuracy of probabilistic 
classification relies on the accuracy of the probability 
density function (pdf) estimation, which can be obtained by 
parametric, nonparametric, or semiparametric methods. 
Parametric approaches are easy to implement, but the 
assumed pdf may not always match the original data 
distribution very well. In the nonparametric approach, it is 
assumed that a functional form of probability densities is 
unknown. The semiparametric estimation of the pdf, having 
a flexible structure, can represent any distribution and 
include a set of parameters for particular distributions. The 
unknown distribution is defined as a weighted sum of a 
number of component distributions (e.g., Gaussian 
distribution). Some researchers have proposed 
semiparametric estimation of the pdf using  artificial neural 
networks [4]. Particularly, Tsuji et al. [5] proposed a 
recurrent log-linearized Gaussian mixture network (R-
LLGMN), which is based on the  hidden Markov model 
(HMM). The backpropagation-through-time (BPTT) 
algorithm [6] was used to train the network. Obviously, the 
epoch-wise back-propagation-through-time algorithm is not 
suitable for the real-time operation of a recurrent network 
(e.g., R-LLGMN). In this paper, we introduce a real-time 
recurrent learning algorithm for R-LLGMN and use it for 
on-line classification of EEG signals during imagination of 
hand movement.   
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II. METHODS 

A. Recurrent Log Linearized Guassian Mixture Network (R-
LLGMN) 

 The R-LLGMN proposed by Tsuji et al. [5] is a neural 
network which is based on a hidden Markov model (HMM). 
The details of  R-LLGMN can be found in [5]. Let us 
consider a HMM with C classes where the class c is 
composed of cK states. According to this model, given a 
time series ,t)(x̂  the a posteriori probability for class c, 

),x̂|(cp  is given by  
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Here, )(kc
tα  is the forward variable, which is defined as the 

probability for partial time series ))( x..., ),2( x),1(x( t  to be 
generated from class c  and input vector )(x t occurs from 
state k in class c, )(kc

tα  can be computed according the 
forward algorithm as follows: 
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where c
kk ,′γ  is the probability of state changing from k′  to k  

in class c, and ))(x( tbc
k is defined as the a posteriori 

probability for state k  in class c  corresponding to ).(x t  The 
observation probability of state in class c is approximated 
with Gaussian mixture model (GMM). Using GMM, the 
right side of (2) can be approximated as  
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where ),,(
,,  , mkc
mkcr μ  and ),,( mkcΣ  are the mixing 

proportion, the mean vector, and the covariance matrix of 
each component ( ).,, mkc  Applying the log-linearization to 
(4), we obtain 

)(X              

) , );((log )(

,,

),,(),,(
,,,,,

t

txgrt

Tc
mkk

mkcmkc
mkc

c
kk

c
mkk

′

′′

=

ΣΔ

β

μγξ
        (5) 

where )(X t  is defined as 
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The model (4) can be developed by the neural network 
structure in which c

mkk ,,′β  is used as the weight coefficients 
of the network. To satisfy the statistical constraints of the 
elements c

mkk ,,′β  during training the network, the new 

coefficient vector c
mkk ,,w ′  are defined as follows 
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Subsequently, (3) can be written as 
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Tsuji et al. [5] transformed this model to a recurrent 
neural network with five layers and used backpropagation-
through-time (BPTT) algorithm for training the network. In 
this work, we introduce a real-time learning algorithm for R-
LLGMN. 

B. Real-Time Learning Algorithm for R-LLGMN 
The real-time recurrent learning (RTRL) algorithm is one 

of the successful leaning algorithms where the gradient of 
errors is propagated forward in time rather than backward in 
time. Therefore, it is well suited for on-line training of 
recurrent neural networks. 

The RTRL algorithm is based on the instantaneous  
energy function as 
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where )(tTc  denote the target response of the output neuron 
c at time t and )()5( tOc  is the output of neuron c in the fifth 
layer. The objective is to adapt the weight coefficients 

c
mkk ,,w ′ so as to minimize )(tJ , that is, to maximize the 

likelihood that teacher vector )(tT  is obtained for the input 
vector ).(x t  To accomplish this objective we may use the 
method of steepest descent as follows 
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Fig. 1. The structure of a typical trial of experiment for hand movement control.  

III. EXPERIMENTAL SETUP 

A. Subjects and Recording 
The experiments were carried out with two able-bodied 

volunteer subjects. EEG signals were recorded at a sampling 
rate of 256 from positions F3, F4, C3, and C4 by Ag/AgCl 
scalp electrodes placed according to the International 10-20 
system and then were lowpass filtered (cutoff frequency 45 
Hz). The eye blinks were recorded by placing an electrode 
on the forehead above the left eyebrow line. All recording 
channels were referenced to the right earlobe. The signals 
were continuously collected and processed during the 
experiments, while the subject was free to blink and to move 
his eyes. The experiment consisted of 8 sessions for each 
subject. Each session was conducted on a different day and 
consisted of 10 runs. Each run consisted of at least 3 
feedback trials. A resting period of about 2 minutes was 
enforced between each run.  

B. Experimental Paradigm 
The experiment was based on an interactive virtual 

reality environment. The subjects sat on a relaxing chair 
with armrests. At the start of trial, an empty glass was shown 
to the subject for 5 s. After 5 s, an open hand was beginning 
to reach  the glass. After reaching the hand to the glass, at 
5.8 s, an active feedback phase lasting 5 s was started in 
which the user should try to grasp the glass by imagination 
of right-hand grasping. Upon the detection of motor imagery 
by the first classifier (C1), the hand will be closed 
sequentially. The sequence of closing was controlled by the 
output of classifier.  Following the grasping, the second 
classifier (C2) was activated and  the subject should try to 
keep the hand closed until the glass filled by a liquid (i.e. 
relaxation phase). This is the idle state in which the subject 
does not perform any specific mental task. During the 
relaxation phase, if an error was made by the interface (a 
misinterpretation of a command that the user has given, i.e., 

detecting the right-hand imagination by the first classifier 
and opening the hand), the subject should try to correct this 
error and close the hand by imagination of left-hand 
grasping which is detected by the second classifier (C2). 
Upon detecting the imagination  of  the left-hand grasping 
by the C2, the hand will be closed. 

Following the relaxation phase, the C1 was deactivated, 
but the C2 remained active. At this time, the subject is free 
to move his right-hand. Upon detection the imagination of 
the left-hand movement, the C1 was activated and the C2 
was deactivated. The subject could open the hand by 
imagination of the right-hand movement. Fig. 1 shows the 
structure of a typical trial for hand movement control. 

C. Real-time ocular artifact suppression 
One of the major problems in developing an online EEG-

based BCI is the ocular artifact suppression. In this work, 
during the online experiments, eye blink artifacts were 
suppressed automatically by using a neural adaptive noise 
canceller [7]. The primary signal was the measured EEG 
data from one of the EEG channels. The reference signal 
was the data recorded from the forehead electrode. Here the 
adaptive filter was implemented by means of a multi layer 
perceptron neural network. The detail can be found in [7]. 

D. Hardware and Software 
In our case, we used Matlab Simulink under Windows 

XP for on-line data acquisition, filtering and ocular artifact 
suppression, feature extraction, classification and providing 
interactive virtual reality environments. The EEG was 
recorded with a bipolar EEG-amplifier (g.USBamp, g.tec, 
Guger Technologies, Graz, Austria).  

IV. RESULTS  
The EEG data was continuously recorded and filtered 

and the eye blink artifacts were removed online during each 
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run of experiment. At each point of EEG data, the features 
were extracted from 1-s sliding window and classified. The 
feature set was formed from the spectral power of EEG 
signal of two selected EEG channels in theta, lower alpha, 
upper alpha, lower beta, upper beta, and gamma frequency 
bands.  The control signal was generated every 1 s. To form 
the control signal, the results of classifier within every 1s 
was mediated by a simple logical majority vote function. 

Two schemes of classification process were used here 
for virtual hand grasp control: adaptive and static 
classification. In adaptive scheme, the classifier was 
continuously updated while the static classifier was not. 
Adaptive scheme was used to train the classifier on-line 
during the first sessions.  

Fig. 2 shows the results of on-line hand grasp control 
during different runs of the first and second sessions  for two 
subjects where the adaptive classifier was used for all runs 
of the session. It is observed that the subject SP was able to 
reach a classification accuracy rate of 81% and the subject 
AS 83% after 3 runs of experiment without off-line training 
during the first session. The average accuracy rate obtained 
during the first session of experiment is 80.3% for the 
subject SP and 82.4% for the subject AS. The subject SP 
was able to reach an accuracy of 100% during the second 
session. The average accuracy is 90% during the second 
session of experiment. 

Fig. 3 shows  the average performance over all runs 
during each session for all subjects using both adaptive and 
static classification schemes. It is observed that the 
performance of static scheme is almost the same as that of 
adaptive. In subject SP, it is observed that the performance 
of BCI decreases from 89.8% to 81.0% when the classifier 
was switched from adaptive to static in the third session and 
begins to incases during next experimental sessions. During 
the sixth session, when the classifier was switched from 
static to adaptive mode, the performance increases from 
84.7% to 87.2% and remains the same  for the subsequent 
experiment sessions during static mode of  classifier 
operation. The same results were obtained for the subject 
AS. 

V. DISCUSSION AND CONCLUSIONS 
During the present BCI experiment which is based on an 

interactive virtual reality environment, the subjects received 
feedback from beginning the experiments without any pre-
training. The subjects could achieve an average accuracy of 
81.4% during the first experimental session and 85.5% 
during the second session, while the adaptive classification 
was used. During the last session, an average accuracy of 
83.6% over two subjects was obtained using classification 
with no adaptation.  

In this paper, we addressed several major issues including 
subject training, machine learning, and error correction in 
designing an online BCI system for real-world tasks. One 
important issue for online BCIs is the self-initiation of the 
system without assistance from others which remains to be 

addressed before the system can be used for controlling the 
artificial devices. 
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Fig. 2. Classification accuracies obtained during different runs of the first 
(left) and second session (right)  for the subjects SP (a), (c) and AS (b), (d). 
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Fig. 3. The average performance obtained during each session for the 
subjects SP (a) and AS (b), using both adaptive (dark gray) and static (light 

gray) classification.
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