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a b s t r a c t

This paper presents a new online single-trial EEG-based brain–computer interface (BCI) for controlling
hand holding and sequence of hand grasping and opening in an interactive virtual reality environment.
The goal of this research is to develop an interaction technique that will allow the BCI to be effective
in real-world scenarios for hand grasp control. One of the major challenges in the BCI research is the
subject training. Currently, in most online BCI systems, the classifier was trained offline using the data
obtained during the experiments without feedback, and used in the next sessions in which the subjects
receive feedback. We investigated whether the subject could achieve satisfactory online performance
without offline training while the subjects receive feedback from the beginning of the experiments during
hand movement imagination. Another important issue in designing an online BCI system is the machine
learning to classify the brain signal which is characterized by significant day-to-day and subject-to-
subject variations and time-varying probability distributions. Due to these variabilities, we introduce
the use of an adaptive probabilistic neural network (APNN) working in a time-varying environment for

classification of EEG signals. The experimental evaluation on ten naïve subjects demonstrated that an
average classification accuracy of 75.4% was obtained during the first experiment session (day) after about
3 min of online training without offline training, and 81.4% during the second session (day). The average
rates during third and eighth sessions are 79.0% and 84.0%, respectively, using previously calculated
classifier during the first sessions, without online training and without the need to calibrate. The results
obtained from more than 5000 trials on ten subjects showed that the method could provide a robust

nt ex
performance over differe

. Introduction

Over the past decade, many efforts have been done to use
he electroencephalogram (EEG) as a new communication chan-
el between human brain and computer. This new communication
hannel is called brain–computer interface (BCI). A variety of BCI
ystems have been described in the literature mostly differing in the
equested mental strategy and in the type of brain signal used for
lassification. The majority of BCI systems rely on the spontaneous
EG components in the sense that they are not dependent on spe-
ific sensory events, such as slow cortical potentials [1,2], mu and/or
Please cite this article in press as: Hazrati MKh, Erfanian A. An online EEG
adaptive probabilistic neural network. Med Eng Phys (2010), doi:10.1016/

eta rhythms [3,4], and features extracted from the spontaneous
EG [5–8]. Other types of BCIs are based on the P300 of the visual
vent-related potential [9–11]. The P300-event-related potential
s an evoked response to an external stimulus which presents as
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periment sessions and different subjects.
© 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

a positive deflection at a latency of around 300 ms after the onset
of external stimuli. Farwell and Donchin [9] first demonstrate the
use of P300 for BCIs in a so-called oddball paradigm. One BCI solu-
tion relies on an involuntary response known as the steady-state
visual evoked potential (SSVEP) [12–14]. SSVEP is a periodic evoked
potential elicited by rapidly repetitive visual stimulation. When a
subject focuses attention on such stimulus, EEG activity may be
detected over occipital areas at corresponding frequencies. Effec-
tive attempts have been done to improve the accuracy and capacity
of the BCI systems. In addition to the employment of different signal
processing approaches [8,15–18], some researchers have investi-
gated the role of EEG biofeedback [19], response verification [20],
and mental training [21] on EEG control.

Although significant progress has been made in the area
of brain–computer interface in recent years, the experimental
paradigms have been largely designed for cursor movement [3,4]
-based brain–computer interface for controlling hand grasp using an
j.medengphy.2010.04.016

and spelling [22] under certain conditions and mainly for restricted
scenarios or demonstration purposes, e.g. [17,23–25]. In our pre-
vious work in 2002 [26], we explored the use of single-channel
single-trial EEG signals for natural control of prosthetic hand grasp
in an amputee subject. The experiments were performed on a below

d.
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lbow amputee subject. The tasks to be discriminated were the
magination of hand grasping, opening, and idle state. An aver-
ge correct classification rate of 83% was achieved. Recently, in a
ase study, the use of BCI for a limited control of hand grasp in a
etraplegic subject has been demonstrated [27,28]. The beta activity
ssociated with foot movement imagination [27] and the frequency
ands (14–16 and 18–22 Hz) associated with imagination of the left
and movement [28] was used as a triggering signal for control of

unctional electrical stimulation.
There are several challenges involved in employing BCI for real-

orld tasks such as hand grasp control. The ability to control the
equence of hand grasping and holding in upper-extremity pros-
hetic devices is a critical issue. Holding function is accomplished by
BCI state where the user is not involved in any particular mental

ask and BCI should not carry out any action.
Another important issue in designing a practical BCI is the selec-

ion of mental tasks to be imagined. Different types of mental tasks
ave been used in BCI including left, right, foot, and tongue motor

magery. In many online BCI systems, the mental task is different
rom the subject’s intension which is the action to be controlled by
he BCI, e.g. [27–30]. However, it should be noted that it is desir-
ble to select a mental task to be consistent with the desired action
o be performed by BCI. The intended movement is to be what the
ubject imagines.

One of major challenges in BCI research is both subject and
lassifier training. Currently, in most online BCI systems, the
lassifier was trained offline using the data obtained during the
xperiments without feedback, and used in the next sessions in
hich the subjects receive feedback [22,30–32,50]. Moreover, the

xperimental paradigms during offline calibration sessions is dif-
erent from that during online control. This biofeedback affects the
patial–temporal-spectral patterns of EEG activity [33]. Further-
ore, the mental training which is performed during BCI sessions
ill also affect the EEG signals produced during performance of
otor imagery. This means that the classifier has to be trained

gain offline [34]. Vidaurre et al. [23,24] introduced an online BCI
sing continuously or discontinuously adaptation of an initial clas-
ifier to control the horizontal position of a ball falling downward
rom top of the screen by the imagination of left- or right-hand

ovements, while online experiments were conducted on naïve
nd untrained subjects and the subjects received feedback from
he beginning of the online experiments. Initial classifier, which
as trained offline, was applied in the first trial and then updated

ontinuously or discontinuously. Besides, they provided a static
ubject-specific classifier for comparison with two continuous and
iscontinue adaptive systems while 3 nonfeedback runs were used
or offline training of classifier and used for classifying subsequent
ix feedback runs on the same day [24].

Our aim in this work is to test whether the naïve and untrained
ubjects could achieve satisfactory online performance with-
ut offline training of the classifier while the subjects receive
eedback from the beginning of the experiments. Two schemes
f classification were used: adaptive and static. The adaptive
cheme was used during the first sessions (days) with feedback
o train the classifier and used the trained classifier for subsequent
xperiment sessions (days) with no adaptation and no offline cali-
ration.

The BCI systems translate the brain activity into signals that con-
rol the external devices. Thus, event detection and classification of
rain signals are an important issue in developing an EEG-based
CI. In this context, effective attempts have been done to improve
Please cite this article in press as: Hazrati MKh, Erfanian A. An online EEG
adaptive probabilistic neural network. Med Eng Phys (2010), doi:10.1016/

he classification accuracy and capacity of the BCI systems [35].
owever, robust and accurate EEG discrimination still remain a
hallenge in developing an online EEG-based BCI. The significant
onsiderations in classifier design are computational complexity,
eneralization performance, and robustness to time-varying envi-
 PRESS
ering & Physics xxx (2010) xxx–xxx

ronment. The pattern recognition strategy should be robust against
day-to-day usage.

In this work, we develop a new BCI system based on an adaptive
probabilistic neural network working in a non-stationary environ-
ment for the first time in the literature for online classification of
EEG signals to control the sequence of hand grasping and opening
in an interactive virtual reality environment.

2. Classification approach

The measured values of EEG signal can be considered realiza-
tions of a random variable with a certain distribution. In this case,
the pattern classification problem usually reduces to the construc-
tion of a model that estimates the class conditional densities p(x|k)
of the data and the respective prior probabilities p(k) for each class
k. Then, using Bayes’ theorem, the posterior probabilities p(k|x) can
be computed

p(k|x) = p(x|k)p(k)∑
lp(x|l)p(l)

(1)

In order to classify an unknown pattern x, we select the class
with the highest posterior probability p(k|x) as suggested by the
Bayes’ rule. The accuracy of probabilistic classification relies on the
accuracy of the probability density function (pdf) estimation, which
can be obtained by parametric, nonparametric, or semiparamet-
ric methods. Parametric approaches are easy to implement, but
the assumed pdf may not always match the original data distri-
bution very well. In the nonparametric approach, it is assumed
that a functional form of probability densities is unknown. Many
researchers have studied Bayesian classifiers by the estimation of
probability density function using artificial neural networks, the
so-called probabilistic neural networks (PNNs) [36–42]. The PNNs
implement in a parallel fashion nonparametric estimation tech-
niques commonly used in statistics. They are characterized by fast
training and convergence to the Bayes-optimal decision surface.

The bayesian classifier based on parametric techniques has been
already employed in BCI design [15,43–45]. In this work, we use
a probabilistic neural network based on nonparametric approach
working in a time-varying environment for online classifying the
EEG pattern during motor imagery.

2.1. Probabilistic neural network

The probabilistic neural network (PNN), introduced by Specht
[37,38], is based on well-established statistical principles derived
from Bayes’ decision strategy and nonparametric kernel based esti-
mators of probability density functions and is capable of realizing
or approximating the Bayes classifier

C(x) = arg

(
max

1≤j≤M
{pjfj(x)}

)
(2)

where x � Rd is a d-dimensional feature vector, C(x) denotes the
estimated class of pattern x, pj is the a priori probability of class j
(1 ≤ j ≤ M), and the conditional probability density function of class
j is fj. The object of the PNN is to estimate the values of fj. This can be
done using a nonparametric estimator based on the Parzen kernel
in the form

f̂nj
(x) = 1

nj

nj∑
i=1

Knj
(x, X(j)

i
) (3)
-based brain–computer interface for controlling hand grasp using an
j.medengphy.2010.04.016

where X = {Xi, Yi} is the set of n observations, each Xi ∈ �d is a feature
vector, and Yi is a label indicating the class of pattern Xi. The original
set can be partitioned into M independent subsets Xj, so that each
subset contains only the data of the corresponding class. nj denotes

dx.doi.org/10.1016/j.medengphy.2010.04.016
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he number of patterns of class j, i.e., nj = |Xj|. The sequence Kn is
ased on the Parzen kernel in the multidimensional version and
akes the following form:

n(x, u) = h−d
n K

(
x − u

hn

)
(4)

here hn is a certain sequence of numbers and K is an appropriately
elected function. Precise assumptions concerning sequence hn and
unction K that ensure the convergence of PNNs were given in [46].
he function K can be presented in the form

(x) =
d∏

i=1

H(x(i))

Then, sequence Kn is expressed by means of formula

n(x, u) = h−d
n

d∏
i=1

H

(
x(i) − u(i)

hn

)
. (5)

The most popular is the Gaussian kernel given by

(�) = (2�)−1/2e−1/2�2
(6)

and

n(x, u) = h−d
n (2�)−1/2

d∏
i=1

e

(
x(i) − u(i)

hn

)2

. (7)

The prior probabilities pj are estimated by

ˆ j = nj

n
(8)

here nj is the number of observations from class j, j = 1,. . .,M. Com-
ining (2), (3), and (8) we get the following discriminant function
stimate:

ˆ
j,n(x) = 1

nj

nj∑
i=1

Knj
(x, X(j)

i
) (9)

Assign input pattern x to class m in moment n if

d̂m,n(x)d̂i,n(x)
for i /= m, i = 1, ..., M, n = 1, 2, ...

(10)

.2. Adaptive probabilistic neural network

The nonparametric method discussed above can be applied only
here probability distributions do not change with time. To gen-

ralize the above nonparametric pattern classification scheme to
on-stationary case, Rutkowski [46] presented a recursive version
f the discriminate function estimate (9) as

d̂m,n+1(x) = d̂m,n(x) + am,n+1
[
Tm,n+1Km,n+1(x, Xn+1) − d̂m.n(x)

]
d̂m,0 = 0

Tm,n =
{

1 if Yn = m
0 if Yn /= m

for m = 1, ..., M, n = 0, 1, 2....

(11)

In order the pattern classification rules (10) and (11) to be
trongly asymptotically optimal, the sequence {Kn} and {an} have
o satisfy certain conditions [46]. In this regard, the sequences {Kn}
nd {an} have been selected to be of following type

hn = kn−H, k > 0, H > 0
−a
Please cite this article in press as: Hazrati MKh, Erfanian A. An online EEG
adaptive probabilistic neural network. Med Eng Phys (2010), doi:10.1016/

an = n

We applied the PNN based on the Parzen kernel to discriminate
etween two tasks (M = 2) with the following parameters

= 0.35, k = 5, a = 0.5.
 PRESS
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Time-varying discriminant functions (10) are estimated by
means of the learning procedure (11) using the learning sequence
{(Xi, Yi), i = 1, 2,. . .n}. In order to classify pattern Xn+K(K ≥ 1), it is nec-
essary to store the whole learning set of the length n. Next, when
the pattern Xn+K to be classified appears, procedure (10) is activated
and put x = Xn+K.

3. Experimental setup and data set

3.1. BCI competition 2003-data set III

Before applying the above statistical classification method to
online hand grasp control, the algorithm was applied to the data
set III of “BCI Competition 2003” which is obtained by Graz group
[47]. This data set was recorded from a healthy subject during a
feedback session. Three bipolar EEG channels were measured over
C3, Cz, and C4. EEG signals were sampled with 128 Hz and was
filtered between 0.5 and 30 Hz. The task was to control a feed-
back bar in one-dimension by imagination of left- or right-hand
movements. The experiment included seven runs with 40 trials
each. All runs were conducted on the same day with breaks of
several minutes in between. The data set consists of 280 trials
of 9-s length. The first 2 s were quiet. At t = 2 s, an acoustic stim-
ulus indicated the beginning of the trial, and a cross (“+”) was
displayed for 1 s. Then, at t = 3 s, an arrow (left or right) was dis-
played as a cue stimulus. The subject was asked to use imagination
as described above to move the feedback bar into the direction of
the cue.

3.2. Online hand grasp control experiments

(1) Subjects: The experiments were carried out with ten able-
bodied volunteer subjects (five females, five males, aged
between 24 and 26). Subject NH was left handed and the
rest right handed. The subjects had never participated in BCI-
experiments before.

(2) Recording: Monopolar EEG signals were recorded at a sampling
rate of 256 from positions F3, F4, Fz, Pz, C3, C4, and Cz by Ag/AgCl
scalp electrodes placed according to the International 10–20
system and then were filtered with a 0.5–45 Hz bandpass filter.
The eye blinks were recorded by placing an electrode on the
forehead above the left eyebrow line. All recording channels
were referenced to the left earlobe and a ground electrode at
the right earlobe. The signals were continuously collected and
processed during the experiments, while the subject was free
to blink and to move his eyes.

(3) Experimental paradigm: The experiment was based on an inter-
active virtual reality environment. The subjects sat on a relaxing
chair with armrests. At the start of trial, an opened hand was
displayed on the screen and the subject should try to keep it
open for 5 s (i.e., holding phase). This is the holding state in
which the subject does not perform any specific mental task.
Following the relaxation phase, a ball began to fall and by reach-
ing the ball to the palm, at 7 s, an active feedback phase lasting
5 s was started in which the user should try to grasp the ball
by imagination of hand grasping (i.e., closing phase). Upon the
detection of motor imagery by the classifier, the hand will be
closed sequentially. The sequence of closing was controlled by
the output of classifier. Following the closing phase, at 12 s, the
color of the ball was changed and a closed hand was displayed.
-based brain–computer interface for controlling hand grasp using an
j.medengphy.2010.04.016

The subject should try to open the hand (i.e., opening phase).
Fig. 1 shows the structure of a typical run.

The experiment consisted of 10 sessions for each subject
(except for one subject in whom 8 sessions were conducted).
Each session was conducted on a different day and consisted

dx.doi.org/10.1016/j.medengphy.2010.04.016
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Fig. 1. The structure and the timing of an ex

of at least 10 runs. Each run consisted of 5 feedback trials and
each run consisted of holding state and imagination of hand
grasping and hand opening. A resting period of about 2 min
was enforced between each run. The tasks to be discriminated
were the imagination of hand movement and holding state.
The imaginative hand movement can be hand closing or hand
opening.

4) Hardware and software: To implement the virtual reality based
BCI for hand grasp control on a PC, appropriate and optimized
computer software was required. In our case, we used Matlab
Simulink (THE MATHWORKS, 1998–2000), Real-Time Work-
shop (THE MATHWORKS, 1999–2000), and Real-Time Windows
Target under Windows XP for online data acquisition, filtering
and ocular artifact suppression, feature extraction, classifica-
tion and providing interactive virtual reality environments. The
EEG was recorded with a bipolar EEG-amplifier (g.USBamp,
g.tec, Guger Technologies, Graz, Austria).

5) Real-time ocular artifact suppression: One of the major problems
in developing an online EEG-based BCI is the ocular artifact sup-
pression. In this work, during the online experiments, eye blink
artifacts were suppressed automatically by using a neural adap-
tive noise canceller (NANC) proposed in [48]. The structure of
adaptive noise canceller is shown in Fig. 2. The primary signal
Please cite this article in press as: Hazrati MKh, Erfanian A. An online EEG
adaptive probabilistic neural network. Med Eng Phys (2010), doi:10.1016/

was the measured EEG data from one of the EEG channels. The
reference signal was the data recorded from the forehead elec-
trode. Here the adaptive filter was implemented by means of a
multi-layer perceptron neural network.

Fig. 2. The structure of the neural adaptive noise canc
ental run during online hand grasp control.

4. Results

4.1. Time–frequency analysis of EEG signals

Event-related desynchronization (ERD) and event-related syn-
chronization (ERS) responses of EEG frequencies during hand
grasp control were used to quantify event-related oscillatory EEG
responses [49]. The ERD/ERS is defined as relative power decrease
(ERD) or power increase (ERS) with respect to a resting period
which is usually placed several seconds before trigger onset. To esti-
mate the time–frequency spectral of EEG signals, baseline spectra
are estimated from the EEG preceding the motor imagery during
holding state. The EEG obtained during each trial experiment is
divided into 250-ms short windows, overlapping by 125 ms, and
a moving average of the amplitude spectra of these is created. The
obtained spectra are then normalized by dividing by the mean base-
line spectra. Normalized spectral for many trials are then averaged
to obtain an average ERSP.

Fig. 3 shows the time–frequency distribution of EEG signals in
subject SD during the first and second sessions of the experiment.
During the first day, a broad-banded event-related desynchroniza-
tion (ERD) of mu rhythm in frequency around 10 Hz is observed
(Fig. 3(a)). In addition, a weak ERD in the 20-Hz band exists. How-
-based brain–computer interface for controlling hand grasp using an
j.medengphy.2010.04.016

ever, a stronger mu and beta ERD is induced during the second day.
Moreover, it is observed that the motor imagination is preceded by
event-related synchronization (ERS) of theta and gamma activity
which also exits during imagination. Increased gamma oscillations

eller used for online ocular artifact suppression.

dx.doi.org/10.1016/j.medengphy.2010.04.016
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Fig. 3. Time–frequency distribution of EEG signals in subject SD during the first (a) and second (b) session of the experiment. At the beginning of the trial, an opened hand
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as appeared on the screen and the subject should try to keep it open (i.e., relaxatio
t second zero) and by reaching the ball to the palm (marked by the second vertic
rasp the ball by imagination of hand grasping (i.e., closing phase). Following the c
losed hand was displayed. The subject should try to open the hand.

n parallel with theta oscillations have been also observed during
oluntary movement performance [50]. Mensh et al. [51] demon-
trated that incorporating gamma-band activity, could enhance
he performance of EEG-based BCI. Enhanced gamma oscillations,
hich has been associated with attentional and intentional states,
ay be related to increased information transfer (high integration

etween the brain areas) in order to finalize the imagery task.
Fig. 4 shows the ERS/ERD maps for the subject HG1 during the

econd, sixth, and seventh experiment sessions. In this subject, a
lear short-lasting theta ERS activity before and after imagination of
and was observed. A more interesting ERS/ERD pattern observed

n subject HG1 is that a strong gamma ERS was appeared during
he imagination, while theta ERS appeared before and after imag-
nation. ERD responses of mu rhythms and ERD/ERS in beta bands
uring hand motor imagery have been already reported [52,53], but
he motivation of current study was to investigate the changes of
RD/ERS patterns during consecutive sessions of BCI-experiments.
or this purpose, we used two-way analysis of variance (ANOVA)
o test the effect of sessions on the ERD responses of mu and beta
hythms. To apply ANOVA test, two groups were constituted. Group
Please cite this article in press as: Hazrati MKh, Erfanian A. An online EEG
adaptive probabilistic neural network. Med Eng Phys (2010), doi:10.1016/

constituted the ERD values in mu (beta) band during 10 runs
f the first session for all subjects, and group 2 the ERD values in
u (beta) band during last session of experiment. Comparing the

RD responses during the first and last sessions, the results show
hat BCI experiment sessions have significant effect on the mu ERD
se) for 5 s. Following the holding state, a ball began to fall (marked the vertical line
), an active feedback phase lasting 5 s was started in which the user should try to
phase (marked by the third vertical line), the color of the ball was changed and a

responses (p < 0.0118), with significant level of 0.05, but effect on
beta ERD is not significant (p < 0.0834).

The results indicate that the subject training occurs during
consecutive experimental sessions could change and enhance the
ERS/ERD patterns. Hence, the classifier designed for BCI system
must be robust against these session-to-session variations.

4.2. Online hand grasp control

The EEG data was continuously recorded and filtered and the eye
blink artifacts were removed online during each run of experiment.
The features were extracted from 1-s sliding windows with 100 ms
overlap and classified. Every 0.5 s, strict majority voting was applied
to the 5 classification results to determine the class and to generate
the control signal. The feature set was formed from the spectral
power of EEG signals recorded from positions F3 and C3 for right-
handed subjects (and form F4 and C4 for left-handed subject) in
theta (4–8 Hz), alpha (8–14 Hz), lower beta (15–24 Hz), upper beta
(25–32 Hz), and gamma (33–40 Hz) frequency bands.

The sequence of closing (opening) consisted of ten steps. Upon
-based brain–computer interface for controlling hand grasp using an
j.medengphy.2010.04.016

the detection of motor imagery during each 0.5 s, the hand will be
closed (opened) one step. If the motor imagery is correctly detected
during all steps, the hand will be closed (opened) completely. At
12 s, a closed hand was shown to the subject and he/she should try
open the hand by imagination of hand opening.

dx.doi.org/10.1016/j.medengphy.2010.04.016
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Fig. 4. The ERS/ERD maps for the subject HG1 during th

Two schemes of classification process were used here for virtual
and grasp control: supervised adaptive and static classification.
Please cite this article in press as: Hazrati MKh, Erfanian A. An online EEG
adaptive probabilistic neural network. Med Eng Phys (2010), doi:10.1016/

n supervised adaptive scheme, the classifier was continuously
pdated while the static classifier was not. Adaptive scheme was
sed to train the classifier online during the first sessions given
p-to-date feedback to the subjects without any offline training.
hen, the trained classifier was used for subsequent sessions using
nd (a), sixth (b), and seventh (c) sessions of experiment.

static scheme without any calibration. To compute the accuracy of
classification, performed action was compared to the desired action
-based brain–computer interface for controlling hand grasp using an
j.medengphy.2010.04.016

during each 0.5 s.
Fig. 5 shows the results of online hand grasp control during dif-

ferent runs of the first session for all subjects where the adaptive
classifier was used for all runs of the session. The subjects had never
participated in BCI-experiments before and were able to reach a

dx.doi.org/10.1016/j.medengphy.2010.04.016
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ig. 5. The classification accuracies obtained during different runs of the first sessio
M (j), where the adaptive classifier was used for all runs of the session.

lassification accuracy rate between 70.5% and 92.5% in the first
ession without offline training. Interesting observation is that in
ll subjects, except subject FP, an accuracy rate more than 80.0%
as obtained after the first few runs during the first session and

he performance is robust for the subsequent runs.
Table 1 summarizes the average and the best classification

ates obtained for all subjects during the first, second, and last
xperiment sessions. The best accuracies obtained using adaptive
lassification were 70.5–92.5% (with mean of 84.3%) after 3 min
raining during the first session of experiment. The average of clas-
ification rate over all subject during the first session was 75.4%.
uring the second session using adaptive classification, the best
ccuracies were between 81.0% and 93.5% (with mean of 88.2%),
hile the average rate was 81.4%. The results indicate that the sub-

ects could reach such levels of proficiency after one experiment
Please cite this article in press as: Hazrati MKh, Erfanian A. An online EEG
adaptive probabilistic neural network. Med Eng Phys (2010), doi:10.1016/

ession using the proposed method.
During third session of experiment, an average accuracy of 79.1%

as achieved while classifier calculated during sessions 1 and 2 was
sed with no adaptation and no calibration for 8 subjects. Average

able 1
esta and averageb classification rate obtained during the first, second, and eighth experi

Subjects HG1 FP NH1 AS

Session 1 (adaptive
classification)

Best 81.5 70.5 92.5 78.5
Average 73.2 61.9 72.9 67.5

Session 2 (adaptive
classification)

Best 85.0 81.0 93.5 84.5
Average 80.1 75.3 85.3 75.5

Session 8 (static
classification)

Best 90.5 82.0 88.5 93.5
Average 85.1 80.0 85.8 77.2

a Best rate: Mean accuracy over each run was computed and the best run during the se
b Average rate: Mean accuracy over all runs of the session was reported.
the subjects HG1 (a), FP (b), NH1 (c), AS (d), AZ (e), HG2 (f), NH2 (g), MA (h), MH (i),

accuracy over all subjects was 83.6% during eighth session using
static scheme.

Fig. 6 shows the average performance over all runs during each
session for all subjects using both adaptive and static classification
schemes. It is observed that the performance of static scheme is
almost the same as that of adaptive. In subject HG1, it is observed
that the performance of BCI decreases from 80.05% to 77.90% when
the classifier was switched from adaptive to static in the third
session and begins to incases during next experimental sessions.
During the seventh session, when the classifier was switched from
static to adaptive mode, the performance increases from 79.65% to
86.70% and remains the same for the subsequent experiment ses-
sions during static mode of classifier operation. The enhancement
in the performance of BCI during the seventh session compared to
the sixth session is in accordance with the enhancement in ERS/ERD
-based brain–computer interface for controlling hand grasp using an
j.medengphy.2010.04.016

patterns observed during the seventh experiment session (Fig. 4).
Interesting result observed in Fig. 6 is that the same results

obtained for subject HG1 were almost observed in all other sub-
jects. In the last session of experiment, all subject could control the

mental sessions.

AZ HG2 NH2 MA MH KM Mean

91.0 83.5 90.0 87.0 85.0 83.0 84.3
79.1 80.2 83.4 76.6 81.4 77.8 75.4
89.5 91.5 92.0 90.5 86.0 88.0 88.2
81.5 85.1 84.3 83.6 80.0 83.4 81.4
96.0 91.5 92.5 93.5 89.0 88.0 90.5
89.8 85.7 84.1 83.6 82.6 82.6 83.6

ssion was reported.

dx.doi.org/10.1016/j.medengphy.2010.04.016
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ig. 6. The average performance obtained during each session for the subjects HG
daptive (black) and static (gray) classifications.

and movement correctly at the best case between 82.5% and 94.5%
the mean accuracy over the run) and on average between 77.2%
nd 87.4% (the mean accuracy over the session for each subject).

.3. BCI competition 2003-data set III

Five 1-s intervals of EEG data of each channel (i.e., C3 and C4)
re considered during each trial of experiment. The first window
tarts 500 ms after cue stimulus and all 1-s windows overlap by
50 ms. The classifiers are trained to differentiate between EEG pat-
erns associated with left- and right-hand movement imagery. The
ntire feature set are formed from each data window, separately
nd consisted of the spectral power of EEG signals recorded from
ositions C4 and C3 in theta, lower alpha, upper alpha lower beta,
nd upper beta frequency bands. The classifier is trained to differ-
ntiate between EEG patterns associated with left- and right-hand
ovement imagery. From 280 data sets, 140 sets are assigned for

raining the classifier, while the rest is kept aside for validation
Please cite this article in press as: Hazrati MKh, Erfanian A. An online EEG
adaptive probabilistic neural network. Med Eng Phys (2010), doi:10.1016/

urposes. The same data set of “BCI Competition 2003” provided
or training and testing are also used here for training and test-
ng, respectively. Table 2 summarizes the classification accuracy
btained using different classification algorithms including linear

able 2
ercentile classification accuracy on the BCI competition 2003-data set III using
ifferent classification scheme.

Classification scheme Classification accuracy

74.91% LDA
83.54% QDA
87.63% GMM
90.16% APNN
FP (b), NH1 (c), AS (d), AZ (e), HG2 (f), NH2 (g), MA (h), MH (i), KM (j), using both

discriminant analysis (LDA) [54], quadratic discriminant analysis
(QDA) [23], Gaussian mixture models (GMMs) [44], and adaptive
probabilistic neural network. It is observed that the best classifica-
tion accuracy obtained is 90.2% by using APNN. It is worthy to note
that the best rate reported in the BCI competition 2003 for this data
set is 89.3% [43].

5. Conclusions and discussion

Classification process is an important issue for developing an
online BCI for real-time applications. Online training of the classifier
is not possible during real-time applications. Therefore, the trained
classifier during previous experimental sessions should provide a
robust performance during real-time-application with no adapta-
tion and no calibration and should be robust against day-to-day
variations and changes in the ERD/ERS responses of EEG signal.
Brunner et al. [17] used an initial classifier trained offline using pre-
viously recorded data (without feedback) for online classification
and reported average accuracies between 49% and 54%, 49% and
54%, and 60% and 67% for first, second, and third sessions, respec-
tively. Vidaurre et al. [24] reported an average accuracy about 74%,
79%, and 84% during the first, second, and third sessions of exper-
iments when an initial classifier computed from 1620 trials was
used during online experiments with continuous adaptation. They
also provided a subject-specific static baseline for online classifica-
tion while during each day 3 nonfeedback runs were recorded, then
a subject-specific classifier was calculated and used to classify six
-based brain–computer interface for controlling hand grasp using an
j.medengphy.2010.04.016

feedback runs without changing the classifier [24]. They reported
an average accuracy about 56%, 58%, and 60% during first, second,
and third day of experiment, respectively. The same scheme for
classification was used in [32], while a classifier was calculated from
the data of a calibration measurement and used for classification

dx.doi.org/10.1016/j.medengphy.2010.04.016
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uring feedback runs without changing the classifier. All recordings
calibration and feedback runs) of one subject have been recorded
n the same day (one ‘session’). An average accuracy between 53.6%
nd 93.2% with mean accuracy of 81.6% was reported.

During the present BCI experiment which is based on an inter-
ctive virtual reality environment, the subjects received feedback
rom beginning the experiments without any pre-training. The clas-
ifier was trained during the first sessions of experiment and used
or online control during the subsequent sessions without adapta-
ion and calibration. The subjects could achieve an average accuracy
f 68–83% after about 3 min training during the first experimental
ession and 80–85% during the second session, while the adaptive
lassification was used. The average accuracy over all subjects is
5.4% and 81.4% during the first and second session, respectively.
uring the 8th session, an accuracy of 77.2–89.8% with mean accu-

acy of 83.8% over ten subjects was obtained using classification
ith no adaptation.

Mental practice which is occurred during the experimental ses-
ions significantly changes the spatial–temporal patterns of EEG
ctivity. The novel finding reported here is that the subject train-
ng occurs during consecutive experimental sessions could change
nd enhance the ERS/ERD patterns. Moreover, during the perfor-
ance of a cognitive task, there are many factors outside the motor

magery process that may be affecting the changes in EEG signals.
t has been known that the signal changes related to alertness,
rousal, focused attention and sustained mental effort, cognitive
oad, and emotional state of the subject are present in EEG. There-
ore, the classifier should be robust against these variations. The

ajor advantages of classifier used in work, is its ability to work
n a time-varying and non-stationary environment. The interesting
bservation is the robust performance of the classifier. The per-
ormance almost remains constant when the static classification
cheme is used. After a few sessions, when the adaptation becomes
ctive, the performance increases and remains constant for the
onsequent sessions with static scheme.

The method proposed in this work operates in cue-based (syn-
hronous) communication mode. The extension of the method to
synchronous control applications constitutes the key issue of our
urrent research. Another important issue in developing an online
CI for disable people is the ability to turn the communication
evice on and off without assistance from others. This is another
ey issue of our current research.
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