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ABSTRACT 
 

In this article, an efficient methodology is presented to optimize the topology of structural 
systems under transient loads. Equivalent static loads concept is used to deal with transient 
loads and to solve an alternate quasi-static optimization problem. The maximum strain 
energy of the structure under the transient load during the loading interval is used as 
objective function. The objective function is calculated in each iteration and then the 
dynamic optimization problem is replaced by a static optimization problem, which is 
subsequently solved by a convex linearization approach combining linear and reciprocal 
approximation functions.  

The optimal layout of a deep beam subjected to transient loads is considered as a case 
study to verify the effectiveness of the presented methodology. Results indicate that the 
optimal layout is dependant of the loading interval. 
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1. INTRODUCTION 
 

Topology optimization is regarded as the most general type of optimization problems [1]. 
Topology optimization has been a very active area of research and various methods have 
been proposed to deal with optimal topology problems subjected to static loads [2-6]. 

Perhaps, the most well known method is Solid Isotropic Material with Penalization 
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(SIMP) [7]. In SIMP, the intermediate designs are penalized so that the optimal design 
consists of just two types of elements: the elements with 0 density and elements with a fixed 
maximum value of density. An excellent review of SIMP and its applications can be found 
in the book by Bendsøe and Sigmond [7]. 

Compared to static problems dealing with the steady state response, the dynamic 
problems are concerned with the transient response, which is time dependant [8]. In dynamic 
problems, if the frequency of excitation is less than one-third of the structure’s lowest 
natural frequency of vibration, then the effects of inertia can be neglected and the problem 
can be treated as quasi static one [9].  

In real world, many loads have a dynamic or transient nature excitation with frequencies 
of higher than the above mentioned criterion. Therefore, many practical problems may 
require dynamic analysis to predict the structural responses accurately. The number of 
articles dealing with optimal topology design under transient or dynamic loads are, however, 
fairly limited and are far less than the articles dealing with static topology optimization 
problems. A review of the most relevant articles is presented in the next section. 

 
 

2. LITERATURE REVIEW 
 

Min et al. (1999) formulated a dynamic problem and studied effect of frequency of 
excitation of impulsive-type loadings on optimal topology of structures. The mean dynamic 
compliance of structure during the loading interval is used as the objective function and the 
differences of optimal topologies in dynamic and static cases were highlighted [8].  

Jang, Lee and park formulated a dynamic optimization problem and showed that for a 
structure with a low natural frequency (in comparison with forced frequency), the dynamic 
characteristics and inertia effect should be considered. They used Equivalent static loads 
(ESLs) method to simplify the problem [10]. ESLs method was originally proposed by Choi 
and Park [11]. This method generates static loads having the same displacement field as 
dynamic loads at each time step. They showed that using ESLs method reduces the 
complexity of dynamic problems and makes it possible to apply a static optimization 
algorithm for solving the problem. Kang et al. used ESLs concept to minimize the maximum 
stress of a rotating bar [12] 

Maybe the most challenging step in formulating an optimization problem is defining the 
appropriate target or objective function. As Christensen and Klabring [1] mention, 
distributing material to make stiffest structure, cause a uniform distribution of strain energy. 
Evolutionary Structural Optimization (ESO), proposed by Xie and Steven [2], is based on 
this phenomena. In ESO, the elements with lowest strain energy are removed and the 
eliminating process is continued until the uniformity of strain energy in the structure is 
achieved. A complete review of this technique can be found in the book by Huang and Xie 
[5]. Rouhi and Rais-rohani proposed an almost similar technique named Element Exchange 
Method (EEM) [6], where low-strain energy elements are exchanged with high-strain energy 
elements and hence a better load path is created. The above mentioned methods have been 
applied for static optimization problems. 

Even for dynamic problems, it makes sense to make the structures as stiff as possible and 
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to use the concept of uniform strain energy field. In most studies in this area, the mean 
compliance of structures is used as the objective function with the goal of minimizing the 
mean strain energy during the loading interval. However, in reality, there is a critical 
moment that the strain energy reaches a maximum value. Hence, in this article, we propose 
to use the maximum strain energy of the structure during the loading interval as the 
objective function. An efficient technique is presented to link the main optimization code 
with a static optimization subroutine. A numerical example of a deep beam subjected to half 
sine load is used to evaluate the performance of proposed methodology. The effectiveness of 
the presented methodology is verified by studying convergence plots, the diagrams of strain 
energy during the optimization process. 

 
 

3. FORMULATION OF THE PROBLEM 
 

A deep beam subjected to a half sine load as shown in figure 1 is considered. The force F(t) 
is a time varying sin function which is applied on the structure from an initial time ti to a 
final time tf. 

If the design domain is divided into smaller elements of densities xi, the vector X, 
comprising the thicknesses of all elements, can be used as the optimization or design 
variables. The objective function can be defined in different ways. The most generally used 
objective function , to be minimized, in problems with static loads is the compliance. 
Minimizing the compliance results in optimal distribution of a certain available volume of 
material to obtain the stiffest structure. The compliance is defined as follows: 

 
 )(C xuF T  (1) 

 
Where F  is the applied external forces and  u  represents the displacements. The 

compliance is defined as the external work of applied forces, which is also equalivalent to 
the strain energy of structure, defined as: 
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Figure 1. The structure and the applied loading 
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where U  represents the strain energy and  K  is the stiffness matrix of structure. 
In case of dynamic loads, the strain energy is a time varying function with different 

values at different times and therefore using the compliance as the objective function is more 
complicated. In this article, the maximum value of strain energy is used as the objective 
function. Minimizing the maximum strain energy of structure during loading time interval, 
between ti and tf , guarantees that at all other time steps, the structure has a smaller strain 
energy. The optimization problem can therefore be formulated as: 
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min max
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(3) 

 
Where V is volume of available material, ia  is area of element i, ix  represents the 

thickness of element i with corresponding lower and upper bounds of min
ix and 

max
ix respectively and n is number of elements. 

One of the difficulties arising in dynamic analysis is the effect of added inertia force on 
the structure’s responses. The equivalent static loads (ESLs) can be used to simplify the 
analysis [13]. ESLs are defined as the static loads generating the same response fields as 
those under a dynamic load at an arbitrary time of dynamic analysis [13]. The equivalent 
static loads method has been previously used for linear dynamic response optimization [14-
16]. Using the ESLs provides the advantage that the problem can be defined as a topology 
optimization problem subjected to static loads and therefore any of existing optimization 
algorithms, suitable for static problems, may be used. 

To use ESLs, the differential equation of motion must first be solved to obtain the 
displacement fields. The governing differential equation of an undamped forced vibration 
problem is expressed as [17]: 

 
 )()()()()( ttXtX FuKum   (4) 

 
Where m is the mass matrix, K is the stiffness matrix, F is the vector of applied forces, 

and u  and u  are displacement and acceleration vectors respectively. To obtain the 
equivalent static loads, Feq , at time t=s we can write: 

 

 )()( ss KuFeq   (5) 

 
It should be noted that even if the external force is applied to a single point of a structure, 

the equivalent static loads are applied to all degrees of freedom of the structure [10]. As the 
stiffness matrix is known, it is only necessary to calculate the displacements by solving the 
governing differential equation. 
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4. SOLUTION OF GOVERNING EQUATION 
 

A time history analysis provides the response of a structure over time during and after the 
application of a load. In order to find the full time history response of a structure, the 
equation of motion must be first solved. 

The central finite difference formula was used to estimate the displacement and 
acceleration at time tn. The central finite difference formula approximates velocity and 
acceleration by using Taylor series expansions of un+1 and un - 1 at time tn as: 
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Substituting these expressions in the governing differential equation, we then obtain: 
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Different steps for solving the governing equation using central difference scheme can be 

summarized as follows: 1) calculation of mass and stiffness matrices, 2) initializing the 
displacement 0u and acceleration 0u , 3) selecting the time step t ,  4) calculation of 

0
2

001 uttuuu  /2, 5) using equation (8) to calculate 1nu  , n 1u  , corresponding 

displacement at time 1nu  
 
 

5. CALCULATION OF MASS MATRIX 
 

A mass matrix is a discrete representation of a continuous distribution of mass [9]. The 
simplest method of calculation is using the particle masses. The process is called mass 
lumping and results in a diagonal mass matrix. For Q4 elements used in this article, the 
lumped mass matrix can be written as: 

 

 

1 0 0 0

0 1 0 0

0 0 1 04

0 0 0 1

m

 
 
 
 
 
 

lm

 

(9) 

 
where m is the mass of one element. The so-called consistent mass matrix is another 
approach which can be used for calculation of mass matrix: 
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T dv cm N N

 (10) 
 

where   is the mass density of material and N is the shape function. This mass matrix is 
called consistent because it uses the same shape function used in developing the stiffness 
matrix. For the Q4 elements, the consistent mass matrix is expressed as: 
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(11) 

 
Cook (2001) recommends to use a weighted average of the lumped and consistent mass 

matrix as follows [8]. 
 

  1 0 5, .   l cm = m m  (12) 

 
We have used this definition in calculating the element mass matrices. The mass matrix 

of the structure is then obtained by assembling the element mass matrices. 
 
 

6. MAIN OPTIMIZATION ALGORITHM 
 

The detailed steps of the main optimization algorithm are shown in Figure 2. 
The main steps of the algorithm can be described as: 1) dynamic analysis, 2) calculating 

ESLs, and 3) topology optimization using static loads. In the first step, the vector of nodal 
displacements at all time steps are calculated. In each time step, the corresponding ESLs are 
then calculated. At a critical time step (t*), when the structure has the maximum strain 

energy, the corresponding critical ESLs, denoted by  * *
eqF t , are then calculated as follows: 

 

          T
* * *
eq eq i fF t t Max t t for t t ,...t *u F u  (13) 

 
Finally, the structure is optimized using the critical ESLs and updated element 

thicknesses are determined. This process is repeated until the convergence is achieved. It is 
important to note that in our proposed technique, the last step can be done by using any 
existing optimization subroutine written for static loads. The static optimization algorithm 
used in this article is described in the following. 
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  i ft for t t ,...tu  

 eq i ft for t t ,...tF  
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(updating design variables) 
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Figure 2. The flowchart of main optimization algorithm 
 
  

7. OPTIMIZATION ALGORITHM FOR STATIC LOADS 
 

As mentioned above in each iteration of main algorithm, an optimization subroutine is run, 
This step is distinguished in figure 2 by a dotted rectangle. The optimization problem can be 
formulated as follows: 
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(14) 

 

Where 
*

U  is the strain energy caused by *
eqF

 
 , calculated from equation (13). Therefore 
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*

U  can be determined as follows: 

 

*
* T *

eqU F u
 

(15) 

 
Other parameters are the same as before. 

In this step, *
eqF  is fixed and *u  depends only on the thicknesses of elements and is not a 

function of time. Therefore, any of common optimization algorithms, appropriate for solving 
static problems, may be applied here. In this research, the convex linearization approach 
(CONLIN) combining linear and reciprocal approximation functions [1] is used. CONLIN is 
a sequential approximation algorithm that starts with an initial variable 0X . In each iteration 

k  , the objective function and all constrains are linearized at the design point kX  in terms 
of either jx  or  1

jx
 , 1j ,...,n  , where n is the number of elements. The linear 

approximation is performed in terms of jx
 

if the corresponding gradient is positive. 

Otherwise, the linearization is performed in terms of reciprocal variable 1
jx
. The gradient of 

objective function at jx  is calculated from the following equation: 

 

 

0
*

T
j

j

U
u( x ) K u( x )

x


 
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(16) 

 

Where 0
jK  is the global version of element j  stiffness matrix, per unit thickness. As can 

be noted from the equation 16, the components of the gradient are not positive and therefore 
the objective function in iteration k is linearized in terms of reciprocal variables. This results 
in [1]: 
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(17) 

 
Lagrangian duality can be used for solving this subproblem [e.g. 18]. This process is 

repeated until a defined convergence criterion is satisfied. We have defined the convergence 
criterion as the maximum value of changes in the values of design variables (i.e. thicknesses 
of elements) from the previous iteration: 

 

 
 k+1 kmax | |, 1,...,j jx x j n   

 
(18) 

 
 

8. NUMERICAL EXAMPLE 
 

The proposed methodology is applied to a two-dimensional plate problem. The rectangular 
area of 100x50 cm , shown in Figure 1, is used as the design domain. The design domain is 
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discretized using 1250 Q4 elements of 2x2 cm squares and a half Sinus load pattern was 
applied at the upper middle of the plate. The material properties of the isotropic material are 
as follows: Young modulus E=2.1x106 N/mm2 and Poisson’s ration v=0.3.  

The objective of the optimization problem is to find the material distribution that 
minimizes the maximum strain energy of structure during all time intervals. The design 
constraints are the maximum volume of used materials and the bounds for density of each 
element. The optimization problem can then be formulated as equation 14, in which the 
minimum and maximum thicknesses of elements are 0.001 and 5 respectively. In order to 
investigate the effect of loading interval of the half sin load on the final optimal layout, six 
examples were analyzed. In these examples, we have varied the loading interval of applied 
half sine load by changing the value of ft  (Figure 1). It should be noted that a large value of 

ft  corresponds to uniform load and a small ft  resembles an impulse load. The six values of 

tf are chosen by trial and error to show the important cases of various possible topologies. 
The optimal topologies corresponding to six values of tf are shown in Cases A to F of 

Figure 3 respectively. The red and blue colors show the presence and absence of the 
material. 

 

Figure 3. Topology optimization of the example for different values of tf. 



S.A. ALAVI, B. AHMADI-NEDUSHAN and H. RAHIMI BONDARABADI 

 

164 

It can be noted that as the tf  increases, the optimal topology layout becomes similar to the 
one for static loading, which implies the transition of the problem from the transient 
response to the steady state response. The optimal layout topology of case F (Figure 3) is 
very similar to optimal layout under static loading reported in [9]. 

As mentioned before our goal is to minimize the maximum strain energy of the structure. 
In order to check the accuracy of the developed program, the study of convergence plots, 
showing the variation of the objective function during the optimization process, is useful. In 
Figure 4, these plots are presented for cases A to F.   
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Figure 4. Convergence history for cases A to F. 

 
The convergence history plots (Figure 4) indicate that in all six cases, the maximum of 

strain energy is decreasing during the optimization process and is converged to minimum 
values. The minimization of maximum value of strain energy guarantees that the values of 
strain energy at all other times are larger than the final value of converged objective 
function. 

The optimal design variables result in the stiffest structure and, in turn, in a uniform 
pattern of strain energy in the structure. To better understand advantage of obtaining a 
uniform strain energy pattern, the case of a one dimensional structure is discussed in the 
following. In a 1-D structure, uniformity of strain energy is equivalent to uniformity of 
stress. Therefore, when the final topology of such structure is subjected to a transient load, 
the maximum stress, which occurs in a critical moment, is uniformly distributed in all parts 
of structure. Therefore, if such a structure subjected to the failure load, all elements reach the 
ultimate stress simultaneously and therefore the best use of materials is achieved. 
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9. SUMMARY AND CONCLUSIONS 
 

In this article, optimal topology layout of structures subjected to transient loads are obtained. 
In case of dynamic loading, we have a time varying response and using the compliance as 
the objective function is more complicated than is the case for static loads. As the strain 
energy of structure is also varying with time, its maximum value at an arbitrary time during 
the loading interval is used as the objective function. This choice guarantees that at all other 
times, the structure has a larger value of strain energy. The concept of ESLs is used to 
reduce the required computational effort. 

The proposed methodology was verified on a deep beam subjected to a transient half Sin 
load for varying loading intervals. Results of the analysis for six different cases demonstrate 
that the optimal layout is very much depends on the loading interval and that the maximum 
value of strain energy is decreasing with time. 
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